Таблица с 3 переменными. Построение логических схем

Учимся составлять логические выражения из высказываний, определяем понятие “таблица истинности”, изучаем последовательность действий построения таблиц истинности, учимся находить значение логических выражений посредством построения таблиц истинности.

Цели урока:

  1. Обучающие:
    1. Научить составлять логические выражения из высказываний
    2. Ввести понятие “таблица истинности”
    3. Изучить последовательность действий построения таблиц истинности
    4. Научить находить значение логических выражений посредством построения таблиц истинности
    5. Ввести понятие равносильности логических выражений
    6. Научить доказывать равносильность логических выражений, используя таблицы истинности
    7. Закрепить навыки нахождения значений логических выражений посредством построения таблиц истинности
  2. Развивающие:
    1. Развивать логическое мышление
    2. Развивать внимание
    3. Развивать память
    4. Развивать речь учащихся
  3. Воспитательные:
    1. Воспитывать умение слушать учителя и одноклассников
    2. Воспитывать аккуратность ведения тетради
    3. Воспитывать дисциплинированность

Ход урока

Организационный момент

Здравствуйте, ребята. Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Составление логических выражений. Таблицы истинности». Изучив данную тему, вы научитесь, как из высказываний составляются логические формы, и определять их истинность посредством составления таблиц истинности.

Проверка домашнего задания

Записать решение домашних задач на доску
Все остальные откройте тетради, я пройду, проверю, как вы выполнили домашнее задание
Давайте еще раз повторим логические операции
В каком случае в результате операции логического умножения составное высказывание будет истинно?
Составное высказывание, образованное в результате операции логического умножения, истинно тогда и только тогда, когда истинны все входящие в него простые высказывания.
В каком случае в результате операции логического сложения составное высказывание будет ложно?
Составное высказывание, образованное в результате операции логического сложения, ложно тогда, когда ложны все входящие в него простые высказывания.
Как влияет инверсия на высказывание?
Инверсия делает истинное высказывание ложным и, наоборот, ложное – истинным.
Что вы можете сказать об импликации?
Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».
Обозначается А -> В
Составное высказывание, образованное с помощью операции логического следования (импли­кации), ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).
Что вы можете сказать о логической операции эквивалентности?
Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно с помощью оборота речи “... тогда и только тогда, когда…”, “…в том и только в том случае…”
Составное высказывание, образованное с помощью логической операции эквивалентности истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Объяснение нового материала

Хорошо, повторили пройденный материал, переходим к новой теме.

На прошлом уроке мы находили значение составного высказы­вания путем подстановки исходных значений входящих логических переменных. А сегодня мы узнаем, что можно построить таблицу истинности, которая определяет истинность или лож­ность логического выражения при всех возможных комбинациях исходных значе­ний простых высказываний (логических переменных) и, что можно определить значения исходных логических переменных, зная какой нам нужен результат.

Еще раз рассмотрим наш пример с прошлого урока

и построим таблицу истинности для этого составного высказывания

При построении таблиц истинности есть определенная последовательность действий. Давайте запишем

  1. Необходимо определить количество строк в таблице истинности.
  • количество строк = 2 n , где n – количество логических переменных
  • Необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.
  • Необходимо построить таблицу истинности с указанным количеством строк и столбцов, ввести названия столбцов таблицы в соответствии с последовательностью выполнения логических операций с учетом скобок и приоритетов;
  • Заполнить столбцы входных переменных наборами значений
  • Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью.
  • Записали. Строим таблицу истинности
    Что мы делаем во-первых?
    Определить количество столбцов в таблице
    Как мы это делаем?
    Считаем количество переменных. В нашем случае логическая функция содержит 2 переменные
    Какие?
    А и В
    Значит сколько строк будет в таблице?
    Количество строк в таблице истинности должно быть равно 4.
    А если 3 переменных?
    Количество строк = 2³ = 8
    Верно. Что делаем дальше?
    Определяем количество столбцов = количеству логических переменных плюс количество логических операций.
    Сколько будет в нашем случае?
    В нашем случае количество переменных равно двум, а количество логических операции - пяти, то есть количество столбцов таблицы истинности равно семи.
    Хорошо. Дальше?
    Строим таблицу с указанным количеством строк и столбцов, обозначаем столбцы и вносим в таблицу возможные наборы значений исходных логических переменных и заполняем таблицу истинности по столбцам.
    Какую операцию будем выполнять первой? Только учитывайте скобки и приоритеты
    Можно сначала выполнить логическое отрицание или найти значение сначала в первой скобке, затем инверсию и значение во второй скобке, затем значение между этими скобками

    ┐Аv┐В

    (AvB)&(┐Av┐B)

    Теперь мы можем определить значение логической функции для любого набора значении логических переменных
    Теперь записываем пункт “Равносильные логические выражения”.
    Логические выра­жения, у которых последние столбцы таблиц истинности сов­падают, называются равносильными. Для обозначения равносильных логических выражений используется знак “ = “,
    Докажем, что логические выражения ┐ А& ┐В и AvB равносильны. Построим сначала таблицу истинности логического выражения


    Сколько столбцов будет в таблице? 5
    Какую операцию будем выполнять первой? Инверсию А, инверсию В

    ┐А&┐В

    Теперь построим таблицу истинности логического выражения AvB
    Сколько строк будет в таблице? 4
    Сколько столбцов будет в таблице? 4

    Мы все понимаем, что, если нужно найти отрицание для всего выражения, то приоритет, в нашем случае, принадлежит дизъюнкции. Поэтому сначала выполняем дизъюнкцию, а затем инверсию. К тому же мы можем переписать наше логическое выражение AvB. Т.к. нам нужно найти отрицание всего выражения, а не отдельных переменных, то инверсию можно вынести за скобки ┐(AvB), а мы знаем, что сначала находим значение в скобках

    ┐(AvB)

    Построили таблицы. Теперь давайте, сравним значения в последних столбцах таблиц истинности, т.к. именно последние столбцы являются результирующими. Они совпадают, следовательно, логические выражения равносильны и мы можем поставить между ними знак “=”

    Решение задач

    1.

    Сколько переменных содержит данная формула? 3
    Сколько строк и столбцов будет в таблице? 8 и 8
    Какова будет в нашем примере последовательность операций? (инверсия, операции в скобках, операцию за скобкой)

    Bv┐B (1)

    (1) =>┐C

    Av(Bv┐B=>┐C)

    2. Докажите с помощью таблиц истинности равносильность следую­щих логических выражений:

    (А → B) И (Av┐B)

    Какой делаем вывод? Данные логические выражения не равносильны

    Домашнее задание

    Доказать, используя таблицы истинности, что логические выражения

    ┐A v ┐B и А&В равносильны

    Объяснение нового материала (продолжение)

    Мы уже несколько уроков подряд используем понятие “таблица истинности”, а что же такое таблица истинности , как вы думаете?
    Таблица истинности – это таблица, устанавливающая соответствие между возможными наборами значений логических переменных и значениями функций.
    Как вы справились с домашним заданием, какой у вас получился вывод?
    Выражения равносильны
    Помните, на предыдущем уроке мы из составного высказывания составляли формулу, заменяя простые высказывания 2*2=4 и 2*2=5 переменными А и В
    Теперь давайте учиться составлять логические выражения из высказываний

    Запишите задание

    Записать в виде логической формулы высказывания:

    1) Если Иванов здоров и богат, то он здоров

    Анализируем высказывание. Выявляем простые высказывания

    А – Иванов здоров
    В – Иванов богат

    Хорошо, тогда как будет выглядеть формула? Только не забудьте, чтобы не терялся смысл высказывания, расставить скобки в формуле

    2) Число является простым, если оно делится только на 1 и само на себя

    А - число делится только на 1
    В - число делится только на себя
    С - число является простым

    3) Если число делится на 4, оно делится на 2

    А - делится на 4
    В - делится на 2

    4) Произвольно взятое число либо делится на 2,либо делится на 3

    А - делится на 2
    В - делится на 3

    5) Спортсмен подлежит дисквалификации, если он некорректно ведет себя по отношению к сопернику или судье, и если он принимал «допинг».

    А - спортсмен подлежит дисквалификации
    В - некорректно ведет себя по отношению к сопернику
    С - некорректно ведет себя по отношению к судье
    D - принимал «допинг».

    Решение задач

    1. Построить таблицу истинности для формулы

    ((p&q)→ (p→ r)) v p

    Объясняем сколько строк и столбцов будет в таблице? (8 и 7) Какова будет последовательность операций и почему?

    (p&q)→ (p→ r)

    ((p&q)→ (p→ r)) v p

    Посмотрели на последний столбец и сделали вывод, что при любом наборе входных параметров формула принимает истинное значение, такая формула называется тавтологией. Запишем определение:

    Формула называется законом логики, или тавтологией, если она принимает тождественно значение “истина” при любом наборе значений переменных, входящих в эту формулу.
    А если все значения будут ложны, как вы думаете, что можно сказать о такой формуле?
    Можно сказать, что формула невыполнима

    2. Записать в виде логической формулы высказывания:

    Администрация морского порта издала следующее распоряжение:

    1. Если капитан корабля получает специальное указание, то он должен покинуть порт на своем корабле
    2. Если капитан не получает специального указания, то он не должен покидать порт, или он впредь лишается допуска в этот порт
    3. Капитан или лишается допуска в этот порт, или не получает специального указания

    Выявляем простые высказывания, составляем формулы

    • А - капитан получает специальное указание
    • В - покидает порт
    • С - лишается допуска в порт
    1. ┐А→(┐В v С)
    2. С v ┐А

    3. Записать составное высказывание “(2*2=4 и 3*3 = 9) или (2*2≠4 и 3*3≠9)” в форме логического выражения. Построить таблицу истинности.

    А={2*2=4} B={3*3 = 9}

    (А&В) v (┐А&┐В)

    ┐А&┐В

    (А&В) v (┐А&┐В)

    Домашнее задание

    Выбрать составное высказывание, имеющее ту же таблицу истинно­сти, что и не (не А и не (В и С)).

    1. АиВ или СиА;
    2. (А или В) и (А или С);
    3. А и (В или С);
    4. А или (не В или не С).
    Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
    Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
    Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

    Инструкция . При вводе с клавиатуры используйте следующие обозначения: Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
    Для ввода данных в виде логической схемы используйте этот сервис .

    Правила ввода логической функции

    1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
    2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
    3. Максимальное количество переменных равно 10 .

    Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
    Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
    Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
    Если определены не все значения, функция называется частично определённой.
    Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
    Для представления функции алгебры логики используется следующие способы:

    • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
    • описание функции алгебры логики в виде таблицы истинности.
    • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
      а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
      1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
      2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
      3) полученное произведение логически суммируется.
      Fднф= X 1 *Х 2 *Х 3 ∨ Х 1 x 2 Х 3 ∨ Х 1 Х 2 x 3 ∨ Х 1 Х 2 Х 3
      ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
      б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
      КНФ может быть получена из таблицы истинности по следующему алгоритму:
      1) выбираем наборы переменных для которых функция на выходе =0
      2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
      3) логически перемножаются полученные суммы.
      Fскнф=(X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3)
      КНФ называется совершенной , если все переменные имеют одинаковый ранг.
    По алгебраической форме можно построить схему логического устройства , используя логические элементы.

    Рисунок1- Схема логического устройства

    Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

    Операция НЕ - логическое отрицание (инверсия)

    Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
    • если исходное выражение истинно, то результат его отрицания будет ложным;
    • если исходное выражение ложно, то результат его отрицания будет истинным.
    Для операции отрицания НЕ приняты следующие условные обозначения:
    не А, Ā, not A, ¬А, !A
    Результат операции отрицания НЕ определяется следующей таблицей истинности:
    A не А
    0 1
    1 0

    Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

    Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

    Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
    Применяемые обозначения: А или В, А V В, A or B, A||B.
    Результат операции ИЛИ определяется следующей таблицей истинности:
    Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

    Операция И - логическое умножение (конъюнкция)

    Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
    Применяемые обозначения: А и В, А Λ В, A & B, A and B.
    Результат операции И определяется следующей таблицей истинности:
    A B А и B
    0 0 0
    0 1 0
    1 0 0
    1 1 1

    Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

    Операция «ЕСЛИ-ТО» - логическое следование (импликация)

    Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
    Применяемые обозначения:
    если А, то В; А влечет В; if A then В; А→ В.
    Таблица истинности:
    A B А → B
    0 0 1
    0 1 1
    1 0 0
    1 1 1

    Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

    Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

    Применяемое обозначение: А ↔ В, А ~ В.
    Таблица истинности:
    A B А↔B
    0 0 1
    0 1 0
    1 0 0
    1 1 1

    Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

    Применяемое обозначение: А XOR В, А ⊕ В.
    Таблица истинности:
    A B А⊕B
    0 0 0
    0 1 1
    1 0 1
    1 1 0

    Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

    Приоритет логических операций

    • Действия в скобках
    • Инверсия
    • Конъюнкция (&)
    • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
    • Импликация (→)
    • Эквивалентность (↔)

    Совершенная дизъюнктивная нормальная форма

    Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
    1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все логические слагаемые формулы различны.
    3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
    4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
    СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
    Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

    Совершенная конъюнктивная нормальная форма

    Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
    1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все элементарные дизъюнкции различны.
    3. Каждая элементарная дизъюнкция содержит переменную один раз.
    4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

    Определение 1

    Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

    Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

    Определение 2

    Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

    Определение 3

    Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

    При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

    Рисунок 1.

    Приоритетом в выполнении порядка выполнения операций пользуются скобки.

    Алгоритм построения таблицы истинности логической функции

      Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка) , $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

      Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

      Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

    Рисунок 2.

    Пример 1

    Составить таблицу истинности логического выражения $D=\bar{A} \vee (B \vee C)$.

    Решение:

      Определим количество строк:

      кол-во строк = $2^3 + 1=9$.

      Количество переменных – $3$.

      1. инверсия ($\bar{A}$);
      2. дизъюнкция, т.к. она находится в скобках ($B \vee C$);
      3. дизъюнкция ($\overline{A}\vee \left(B\vee C\right)$) – искомое логическое выражение.

        Кол-во столбцов = $3 + 3=6$.

      Заполним таблицу, учитывая таблицы истинности логических операций.

    Рисунок 3.

    Пример 2

    По данному логическому выражению построить таблицу истинности:

    Решение:

      Определим количество строк:

      Количество простых выражений – $n=3$, значит

      кол-во строк = $2^3 + 1=9$.

      Определим количество столбцов:

      Количество переменных – $3$.

      Количество логических операций и их последовательность:

      1. отрицание ($\bar{C}$);
      2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
      3. конъюнкция ($(A\vee B)\bigwedge \overline{C}$);
      4. отрицание, которое обозначим $F_1$ ($\overline{(A\vee B)\bigwedge \overline{C}}$);
      5. дизъюнкция ($A \vee C$);
      6. конъюнкция ($(A\vee C)\bigwedge B$);
      7. отрицание, которое обозначим $F_2$ ($\overline{(A\vee C)\bigwedge B}$);
      8. дизъюнкция – искомая логическая функция ($\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}$).

    Основные логические операции

    Отрицание (инверсия), от латинского inversio -переворачиваю:

    Соответствует частице НЕ, словосочетанию НЕВЕРНО, ЧТО;

    Обозначение: не A, A, -A;

    таблица истинности:

    Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

    Пример: A = {На улице идет снег}.

    A={Не верно, что на улице идет снег}

    A={На улице не идет снег};

    Логическое сложение (дизъюнкция), от латинского disjunctio - различаю:

    Соответствует союзу ИЛИ;

    Обозначение: +, или, or, V;

    Таблица истинности:

    Дизъюнкция ложна тогда и только тогда, когда оба высказывания ложны.

    Пример: F={На улице светит солнце или дует сильный ветер};

    Логическое умножение (конъюкция), от латинского conjunctio -связываю:

    Соответствует союзу И

    (в естественном языке: и А, и В, как А, так и В,А вместе с В,А, не смотря на В, А, в то время как В);

    Обозначение: Ч, , &, и, ^, and;

    Таблица истинности:

    Конъюкция истинна тогда и только тогда, когда оба высказывания истинны.

    Пример: F={На улице светит солнце и дует сильный ветер};

    Любое сложное высказывание можно записать с помощью основных логических операций И, ИЛИ, НЕ.С помощью логических схем И, ИЛИ, НЕ можно реализовать логическую функцию, описывающую работу различных устройств компьютера.

    2) Таблица истинности - это таблица, описывающая логическую функцию.

    Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (либо, либо).

    Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

    Конъю́нкция- логическая операция, по своему применению максимально приближённая к союзу "и".логи́ческое умноже́ние, иногда просто "И".

    Дизъю́нкция-логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу». логи́ческое сложе́ние, иногда просто «ИЛИ».

    Импликация - бинарная логическая связка, по своему применению приближенная к союзам «если…то…».Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону (остриё всегда указывает на следствие).

    Эквивале́нция (или эквивале́нтность) - двуместная логическая операция. Обычно обозначается символом ≡ или ↔.

    7 . Логические выражения, таблицы истинности логических выражений.

    Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)

    Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

    Логические операции и таблицы истинности

    Логическое умножение КОНЪЮНКЦИЯ - это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.

    Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ

    Логическое отрицание: ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

    Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … , ТО …

    Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности"

    Порядок выполнения логических операций в сложном логическом выражении:

    1. инверсия

    2. конъюнкция

    3. дизъюнкция

    4. импликация

    5. эквивалентность

    Для изменения указанного порядка выполнения операций используются скобки.

    Построение таблиц истинности для сложных выражений:

    Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)

    Количество столбцов = количество переменных + количество логических операций

    При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

    ПРИМЕР: составить таблицу истинности сложного логического выражения D = неA & (B+C)

    А,В, С - три простых высказывания, поэтому:

    количество строк = 23 +2 = 10 (n=3, т.к. на входе три элеманта А, В, С)

    количество столбцов: 1) А

    4) не A это инверсия А (обозначим Е)

    5) B + C это операция дизъюнкции (обозначим F)

    6) D = неA & (B+C), т.е. D = E & F это операция конъюнкции

    А В С E = не А (не 1) F = В+С (2+3) D = E&F (4*5)

    Проблема определения истинности выражения встаёт перед многими науками. Любая доказательная дисциплина должна опираться на некоторые критерии истинности доказательств. Наука, изучающая эти критерии, называется алгеброй логики. Основной постулат алгебры логики заключается в том, что любое самое витиеватое утверждение может быть представлено в виде алгебраического выражения из более простых утверждений, истинность или ложность которых легко определить.

    Для любого "алгебраического" действия над утверждением задаётся правило определения истинности или ложности измененного утверждения, исходя из истинности или ложности исходного утверждения. Эти правила записываются через таблицы истинности выражения . Прежде, чем составлять таблицы истинности, надо поближе познакомиться с алгеброй логики.

    Алгебраические преобразования логических выражений

    Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина . Ложь обозначается нулём, а истина - единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

    Отрицание

    Отрицание и инверсия - самое простое логическое преобразование. Ему соответствует частица "не." Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то "не А" - ложно. Например, утверждение "прямой угол - это угол, равный девяносто градусов" - истина. Тогда его отрицание "прямой угол не равен девяноста градусам" - ложь.

    Таблица истинности для отрицания будет такова:

    Дизъюнкция

    Эта операция может быть обычной или строгой , их результаты будут различаться.

    Обычная дизъюнкция или логическое сложение соответствует союзу "или". Она будет истинной если хотя бы одно из утверждений, входящих в неё - истина. Например, выражение "Земля круглая или стоит на трёх китах" будет истинным, так как первое утверждение - истинно, хоть второе и ложно.В таблице это будет выглядеть так:

    Строгую дизъюнкцию или сложение по модулю также называют "исключающим или" . Эта операция может принимать вид грамматической конструкции "одно из двух: либо..., либо...". Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

    Таблица значений исключающего или

    Импликация и эквивалентность

    Импликация представляет собой следствие и грамматически может быть выражена как "из А следует Б". Здесь утверждение А будет называться предпосылкой, а Б - следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки - истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

    В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А - "точка О - экстремум непрерывной функции", утверждение Б - "производная непрерывной функции в точке О обращается в ноль". Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

    Таблица истинности для импликации выглядит следующим образом:

    Логическая операция эквивалентность, по сути, является взаимной импликацией . "А эквивалентно Б" означает, что "из А следует Б" и "из Б следует А" одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

    В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А - "Точка О является точкой экстремума непрерывной функции", утверждение Б - "В точке О производная функции обращается в ноль и меняет знак". Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А. Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: "производная в точке О обращается в ноль" и "производная в точке О меняет знак".

    Прочие логические функции

    Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

    • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
    • Стрелка Пирса представляет сбой отрицание дизъюнкции.

    Построение таблиц истинности

    Чтобы построить таблицу истинности для какого-либо логического выражения, надо действовать в соответствии с алгоритмом:

    1. Разбить выражение на простые утверждения и обозначить каждое из них как переменную.
    2. Определить логические преобразования.
    3. Выявить порядок действий этих преобразований.
    4. Сосчитать строки в будущей таблице. Их количество равно два в степени N, где N - число переменных, плюс одна строка для шапки таблицы.
    5. Определить число столбцов. Оно равно сумме количества переменных и количества действий. Можно представлять результат каждого действия в виде новой переменной, если так будет понятней.
    6. Шапка заполняется последовательно, сначала все переменные, потом результаты действий в порядке их выполнения.
    7. Заполнение таблицы надо начать с первой переменной. Для неё количество строк делится пополам. Одна половина заполняется нулями, вторая - единицами.
    8. Для каждой следующей переменной нули и единицы чередуются вдвое чаще.
    9. Таким образом заполняются все столбцы с переменными и для последней переменной значение меняется в каждой строке.
    10. Потом последовательно заполняются результаты всех действий.

    В итоге последний столбец отобразит значение всего выражения в зависимости от значения переменных.

    Отдельно следует сказать о порядке логических действий . Как его определить? Здесь, как и в алгебре, есть правила, задающие последовательность действий. Они выполняются в следующем порядке:

    1. выражения в скобках;
    2. отрицание или инверсия;
    3. конъюнкция;
    4. строгая и обычная дизъюнкция;
    5. импликация;
    6. эквивалентность.

    Примеры

    Для закрепления материала можно попробовать составить таблицу истинности для ранее упомянутых логических выражений. Рассмотрим три примера:

    • Штрих Шеффера.
    • Стрелка Пирса.
    • Определение эквивалентности.

    Штрих Шеффера

    Штрих Шеффера - это логическое выражение, которое можно записать в виде "не (А и Б)". Здесь две переменные, и два действия. Конъюнкция в скобках, значит, она выполняется первой. В таблице будет шапка и четыре строки со значениями переменных, а также четыре столбца. Заполним таблицу:

    А Б А и Б не (А и Б)
    Л Л Л И
    Л И Л И
    И Л Л И
    И И И Л

    Отрицание конъюнкции выглядит как дизъюнкция отрицаний. Это можно проверить, если составить таблицу истинности для выражения "не А или не Б". Проделайте это самостоятельно и обратите внимание, что здесь будет уже три операции.

    Стрелка Пирса

    Рассматривая Стрелку Пирса, которая представляет собой отрицание дизъюнкции "не (А или Б)", сравним её с конъюнкцией отрицаний "не А и не Б". Заполним две таблицы:

    А Б не А не Б не А и не Б
    Л Л И И И
    Л И И Л Л
    И Л Л И И
    И И Л Л Л

    Значения выражений совпали. Изучив два эти примера, можно прийти к выводу, как раскрывать скобки после отрицания: отрицание применяется ко всем переменным в скобках, конъюнкция меняется на дизъюнкцию, а дизъюнкция - на конъюнкцию.

    Определение эквивалентности

    Про утверждения А и Б можно сказать, что они эквивалентны, тогда и только тогда, когда из А следует Б и из Б следует А. Запишем это как логическое выражение и построим для него таблицу истинности. "(А эквивалентно Б) эквивалентно (из А следует Б) и (из Б следует А)".

    Здесь две переменных и пять действий. Строим таблицу:

    В последнем столбце все значения истинные. Это значит, что приведенное определение эквивалентности верно при любых значениях А и Б. Значит, оно всегда истинно. Именно так с помощью таблицы истинности можно проверить корректность любых определений и логических построений.

    Публикации по теме