Эксперимент с интерактивной физической моделью. Современные проблемы науки и образования

Основные этапы разработки и исследования моделей на компьютере

Использование компьютера для исследования информационных моделей различных объектов и процессов позволяет изучить их изменения в зависимости от значения тех или иных параметров. Процесс разработки моделей и их исследования на компьютере можно разделить на несколько основных этапов.

На первом этапе исследования объекта или процесса обычно строится описательная информационная модель. Такая модель выделяет существенные, с точки зрения целей проводимого исследования (целей моделирования), свойства объекта, а несущественными свойствами пренебрегает.

На втором этапе создается формализованная модель, т. е. описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и т. д. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Однако далеко не всегда удается найти формулы, явно выражающие искомые величины через исходные данные. В таких случаях используются приближенные математические методы, позволяющие получать результаты с заданной точностью.

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель, т. е. выразить ее на понятном для компьютера языке. Компьютерные модели разрабатывают преимущественно программисты, а пользователи могут проводить компьютерные эксперименты.

В настоящее время широкое распространение получили компьютерные интерактивные визуальные модели. В таких моделях исследователь может менять начальные условия и параметры протекания процессов и наблюдать изменения в поведении модели.

Контрольные вопросы

В каких случаях могут быть опущены отдельные этапы построения и исследования модели? Приведите примеры создания моделей в процессе обучения.

Исследование интерактивных компьютерных моделей

Далее мы рассмотрим ряд учебных интерактивных моделей, разработанных компанией ФИЗИКОН для образовательных курсов. Учебные модели компании ФИЗИКОН представлены на CD-дисках и в виде Интернет-проектов. Каталог интерактивных моделей содержит 342 модели по пяти предметам: физике (106 моделей), астрономии (57 моделей), математике (67 моделей), химии (61 модель) и биологии (51 модель). Часть моделей в Интернете на сайте http://www.college.ru интерактивны, а другие представлены только картинкой и описанием. Все модели вы найдете в соответствующих учебных курсах на CD-дисках.

2.6.1. Исследование физических моделей

Рассмотрим процесс построения и исследования модели на примере модели математического маятника, которая является идеализацией физического маятника.

Качественная описательная модель. Можно сформулировать следующие основные предположения:

подвешенное тело значительно меньше по размеру длины нити, на которой оно подвешено;

нить тонкая и нерастяжимая, масса которой пренебрежимо мала по сравнению с массой тела;

угол отклонения тела мал (значительно меньше 90°);

вязкое трение отсутствует (маятник колеблется в ва-

Формальная модель. Для формализации модели используем известные из курса физики формулы. Период Т колебаний математического маятника равен:

где I - длина нити, g - ускорение свободного падения.

Интерактивная компьютерная модель. Модель демонстрирует свободные колебания математического маятника. В полях можно изменять длину нити I, угол ф0 начального отклонения маятника, коэффициент вязкого трения b.

Открытая физика

2.3. Свободные колебания.

Модель 2.3. Математический маятник

Открытая физика

Часть 1 (ЦОР на CD) ИЗГ

Запуск интерактивной модели математического маятника производится щелчком по кнопке Старт.

С помощью анимации показывается движение тела и действующие силы, строятся графики зависимости от времени угловой координаты или скорости, диаграммы потенциальной и кинетической энергий (рис. 2.2).

Это можно увидеть при свободных колебаниях, а также при затухающих колебаниях при наличии вязкого трения.

Обратите внимание, что колебания математического маятника являются. гармоническими только при достаточно малых амплитудах

%рI ж2mfb ~ ж

Рис. 2.2. Интерактивная модель математического маятника

http://www.physics.ru

2.1. Практическое задание. Провести компьютерный эксперимент с интерактивной физической моделью, размещенной в Интернете.

2.6.2. Исследование астрономических моделей

Рассмотрим гелиоцентрическую модель Солнечной системы.

Качественная описательная модель. Гелиоцентрическая модель мира Коперника на естественном языке формулировалась следующим образом:

Земля вращается вокруг своей оси и Солнца;

все планеты вращаются вокруг Солнца.

Формальная модель. Ньютон формализовал гелиоцентрическую систему мира, открыв закон всемирного тяготения и законы механики и записав их в виде формул:

F = у. Wl_ F = т а.(2.2)

Интерактивная компьютерная модель (рис. 2.3). Трехмерная динамическая модель показывает вращение планет Солнечной системы. В центре модели изображено Солнце, вокруг него - планеты Солнечной системы.

4.1.2. Вращение планет Солнечной

системы. Модель 4.1.Солнечная система(ЦОР на CD) «Открытая астрономия»

В модели выдержаны реальные отношения орбит планет и их эксцентриситеты. Солнце находится в фокусе орбиты каждой планеты. Обратите внимание на то, что орбиты Нептуна и Плутона пересекаются. Изобразить в небольшом окне все планеты сразу достаточно сложно, поэтому предусмотрены режимы Меркурий...Марс и Юпитер...Л,лутон, а также режим Все планеты. Выбор нужного режима производится при помощи соответствующего переключателя.

Во время движения можно менять значение угла зрения в окне ввода. Получить представление о реальных эксцентриситетах орбит можно, выставив значение угла зрения 90°.

Можно изменить внешний вид модели, отключив отображение названий планет, их орбит или системы координат, показываемой в левом верхнем углу. Кнопка Старт запускает модель, Стоп - приостанавливает, а Сброс - возвращает в исходное состояние.

Рис. 2.3. Интерактивная модель гелиоцентрической системы

Г" Система координат С Юпитер...Плутон!■/ Названия планет С. Меркурий...Марс |55 угол зрения!«/ Орбиты планетВсе планеты

Задание для самостоятельного выполнения

http://www.college.ru 1ЩГ

Практическое задание. Провести компьютерный эксперимент с интерактивной астрономической моделью, размещенной в Интернете.

Исследование алгебраических моделей

Формальная модель. В алгебре формальные модели записываются с помощью уравнений, точное решение которых основывается на поиске равносильных преобразований алгебраических выражений, позволяющих выразить переменную величину с помощью формулы.

Точные решения существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.), поэтому для большинства уравнений приходится использовать методы приближенного решения с заданной точностью (графические или численные).

Например, нельзя найти корень уравнения sin(x) = 3*х - 2 путем равносильных алгебраических преобразований. Однако такие уравнения можно решать приближенно графическими и численными методами.

Построение графиков функций может использоваться для грубо приближенного решения уравнений. Для уравнений вида fi(x) = f2(x), где fi(x) и f2(x) - некоторые непрерывные функции, корень (или корни) этого уравнения являются точкой (или точками) пересечения графиков функций.

Графическое решение таких уравнений можно осуществить путем построения интерактивных компьютерных моделей.

Функции и графики. Открытая математика.

Модель 2.17.Функции и графики ЦЩГ*

Решение уравнений(ЦОР на CD)

Интерактивная компьютерная модель. Введите в верхнее поле ввода уравнение в виде fi(x) = f2(x), например, sin(x) = 3-х - 2.

Нажмите кнопку Решить. Подождите некоторое время. Будет построен график правой и левой частей уравнения, зелеными точками будут отмечены корни.

Чтобы ввести новое уравнение, нажмите кнопку Сброс. Если вы сделаете ошибку при вводе, в нижнем окне появится соответствующее сообщение.

Рис. 2.4. Интерактивная компьютерная модель графического решения уравнений

для самостоятельного выполнения

http://www.mathematics.ru Ш1Г

Практическое задание. Провести компьютерный эксперимент с интерактивной математической моделью, размещенной в Интернете.

Исследование геометрических моделей (планиметрия)

Формальная модель. Треугольник ABC называется прямоугольным, если один из его углов (например, угол В) прямой (т. е. равен 90°). Сторона треугольника, противолежащая прямому углу, называется гипотенузой; две другие стороны - катетами.

Теорема Пифагора гласит, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы: АВ2 + ВС2 = АС.

Интерактивная компьютерная модель (рис. 2.5). Интерактивная модель демонстрирует основные соотношения в прямоугольном треугольнике.

Прямоугольный треугольник. Открытая математика.

Модель 5.1. Теорема Пифагора

Планиметрия В51Г (ЦОР на CD)

При помощи мыши можно перемещать точку А (в вертикальном направлении) и точку С (в горизонтальном направлении). Показываются длины сторон прямоугольного треугольника, градусные меры углов.

Переключившись в демонстрационный режим при помощи кнопки со значком кинопроектора, можно просмотреть анимацию. Кнопка Старт запускает ее, кнопка Стоп - приостанавливает, а кнопка Сброс возвращает анимацию в исходное состояние.

Кнопка со значком руки переводит модель обратно в интерактивный режим.

Рис. 2.5. Интерактивная математическая модель теоремы Пифагора

Задание для самостоятельного выполнения

http://www.mathematics.ru |Й|Г

Практическое задание. Провести компьютерный эксперимент с интерактивной планиметрической моделью, размещенной в Интернете.

Исследование геометрических моделей (стереометрия)

Формальная модель. Призма, основанием которой является параллелограмм, называется параллелепипедом. Противоположные грани любого параллелепипеда равны и параллельны. Прямоугольным называется параллелепипед, все грани которого прямоугольники. Прямоугольный параллелепипед с равными ребрами называется кубом.

Три ребра, выходящие из одной вершины прямоугольного параллелепипеда, называются его измерениями. Квадрат

диагонали прямоугольного параллелепипеда равняется сумме квадратов его измерений:

2 2,12, 2 а = а + b + с

Объем прямоугольного параллелепипеда равен произведению его измерений:

Интерактивная компьютерная модель. Перетаскивая мышью точки, можно изменять измерения параллелепипеда. Понаблюдайте, как изменяется длина диагонали, площадь поверхности и объем параллелепипеда при изменении длин его сторон. Флажок Прямой превращает произвольный параллелепипед в прямоугольный, а флажок Куб превращает его в куб.

Параллелепипед.Открытая математика.

Модель 6.2.Стереометрия }

Публикации по теме