Магнитная рамочная антенна 27 мгц. Магнитные антенны из коаксиального кабеля

Диапазон частот 1-30 МГц традиционно называется коротковолновым. На коротких волнах можно принимать радиостанции, расположенные за тысячи километров.

Какую антенну выбрать для коротковолнового приёма

Независимо от того, какую антенну вы выберите, лучше всего, чтобы она была внешней (на улице), наиболее высоко расположена и находилась подальше от линий электропередач и металлической крыши (для снижения помех).

Почему внешняя лучше комнатной? В современной квартире и многоквартирном доме находится множество источников электромагнитного поля, которые являются настолько сильным источником помех, что зачастую приемник принимает одни помехи. Естественно, что внешняя (даже на балконе) будет меньше подвержена действию этих помех. Кроме этого, железобетонные здания экранируют радиоволны, а следовательно внутри помещения полезный сигнал будет слабее.

Всегда используйте коаксиальный кабель для связи антенны с приемником, это также снизит уровень помех.

Тип приемной антенны

На самом деле, на КВ диапазоне тип приемной антенны не столь критичен. Обычно бывает достаточно провода длинной 10-30 метров, а коаксиальный кабель можно подключить в любом удобном месте антенны, хотя для обеспечения большей широкополосности (многодиапазонности), кабель лучше подключать ближе к середине провода (получится Т-антенна с экранированным снижением). В таком случае оплетка коаксиального кабеля к антенне не подключается.

Проволочные антенны

Хотя более длинные антенны могут принять больше сигналов, они также будут принимать больше помех. Это несколько уравнивает их с короткими антеннами. Кроме этого, длинные антенны перегружают (появляются “фантомные” сигналы по всему диапазону, так называемая интермодуляция) бытовые и портативные радиоприемники сильными сигналами радиостанций, т.к. у них небольшой по сравнению с любительскими или профессиональными радиоприемниками. В этом случае в радиоприемнике надо включить аттенюатор (переключатель установить в положение LOCAL).

Если вы используете длинный провод и подключаетесь к концу антенны, то лучше будет использовать для подключения коаксиального кабеля согласующий трансформатор (балун) 9:1, т.к. “длинный провод” имеет высокое активное сопротивление (порядка 500 Ом) и такое согласование снижает потери на отраженный сигнал.

Согласующий трансформатор WR LWA-0130, соотношение 9:1

Активная антенна

Если у вас нет возможность повесить внешнюю антенну, то можно использовать активную антенну. Активная антенна – это, как правило, устройство, сочетающее в себе рамочную антенну (или ферритовую или телескопическую), широкополосный малошумящий высокочастотный усилитель и преселектор (хорошая активная КВ антенна стоит свыше 5000 рублей, правда для бытовых радиоприемников нет смысла приобретать дорогую, вполне подойдет что-то вроде Degen DE31MS). Для снижения помех от сети лучше выбрать активную антенну, работающую от батареек.

Смысл активной антенны в том, чтобы как можно сильнее подавить помеху и усилить полезный сигнал на уровне РЧ (радиочастоты), не прибегая к преобразованиям.

Кроме активной антенны можно использовать любую комнатную, которую сможете сделать (проволочную, рамочную или ферритовую). В железобетонных домах комнатную антенну надо располагать подальше от электропроводки, ближе к окну (лучше на балконе).

Магнитная антенна

Магнитные антенны (рамочная или ферритовая), в той или иной мере, при благоприятном стечении обстоятельств, позволяют снизить уровень “городского шума” (вернее будет сказать, повысить соотношение “сигнал-шум”) за счет своих направленных свойств. Более того, магнитная антенна не принимает электрическую составляющую электромагнитного поля, что также снижает уровень помех.

К слову сказать, ЭКСПЕРИМЕНТ – это основа радиолюбительства. Внешние условия играют в распространении радиоволн существенную роль. Что хорошо работает у одного радиолюбителя, может совсем не работать у другого. Самый наглядный эксперимент распространения радиоволн можно провести с телевизионной дециметровой антенной. Вращая её вокруг вертикальной оси можно заметить, что наиболее качественное изображение не всегда соответствует направлению на телецентр. Это связано с тем, что радиоволны при распространении отражаются и “смешиваются с другими” (происходит интерференция) и наиболее “качественный” сигнал приходит с отраженной волной, а не с прямой.

Заземление

Не стоит забывать о заземлении (через трубу отопления). Не стоит заземлять на защитный провод (PE) в розетке. Особенно “любят” заземление старые ламповые радиоприемники.

Изошутка

Борьба с помехами радиоприему

В добавок ко всему, для борьбы с помехами и перегрузками можно использовать преселектор (антенный тюнер). Использование этого устройства позволяет до определенной степени подавить внеполосные помехи и сильные сигналы.

К сожалению, в городе все эти ухищрения могут не дать желаемого результата. При включении радиоприемника слышен только шум (как правило, шум сильнее на низкочастотных диапазонах). Порой начинающие радионаблюдатели даже подозревают свои радиоприемники в неисправности или недостойных характеристиках. Проверить приемник просто. Отключите антенну (сложите телескопическую антенну или переключите на внешнюю, но ее не присоединяйте) и отсчитайте показания S-метра. После этого выдвиньте телескопическую антенну или подключите внешнюю. Если показания S-метра значительно увеличились, значит с радиоприемником все в порядке, а вам не повезло с местом приема. Если уровень помех близок к 9 баллам или выше, то нормальный прием будет невозможен.

Поиск и устанение источника помехи

Увы, город полон “широкополосных” помех. Многие источники генерируют электромагнитные волны широкого спектра, как искровой разряд. Типичные представители: импульсные блоки питания, коллекторные электродвигатели, автомобили, сети электроосвещения, сети кабельного телевидения и Интернет, маршрутизаторы Wi-Fi, ADSL модемы, промышленное оборудование и многое другое.

Самый простой способ “поиска” источника помех – обследовать помещение с помощью карманного радиоприемника (не важно какого диапазона, ДВ-СВ или КВ, только не FM диапазона). Обойдя комнату можно легко заметить, что в некоторых местах приемник шумит сильнее – это и есть “место локализации” источника помех. “Шуметь” будет практически все, что подключено к сети (компьютеры, энергосберегающие лампы, сетевые провода, зарядные устройства и пр.), а также сама электропроводка.

Именно для того, чтобы хоть как-то снизить пагубное действие городских помех и стали популярны “супер-пупер” навороченные радиоприемники и трансиверы. Городской радиолюбитель просто не может комфортно работать на бытовой аппаратуре, которая достойно себя показывает “на природе”. Требуется большая избирательность и динамика, а цифровая обработка сигнала (DSP) позволяет “творить чудеса” (например, подавлять тональные помехи), недоступные аналоговым методам.

Конечно, самая лучшая КВ антенна – направленная (волновой канал, QUARD, антенны бегущей волны и т.д.). Но будем реалистами. Построить направленную антенну, даже простую, довольно сложно и дорого.

Данная публикация предназначена для начинающих
радиолюбителей и для тех, у кого нет доступа
на кровлю своего дома. Сушко С.А. (ex.UA9LBG )

Магнитные антенны (Magnetic Loop) типа-ML ввиду своих малых размеров становятся всё более популярными. Все они могут размещаться на балконах и подоконниках. Неоспоримо, что классическую популярность завоевали одновитковые магнитные антенны с вакуумным конденсатором и петлей связи, при помощи которых можно проводить радиосвязи даже с другими континентами.

Двух-рамочные антенны в виде восьмёрки сравнительно недавно начали появляться в среде радиолюбителей, хотя на заре появления Си-Би связи в России, такие антенны с определённым успехом практиковались в автомобильных радио-охранных системах диапазона 27МГц, см.рис.1.а. Автомобильная антенна состояла из двух одинаковых рамок (петель) L1;L2 и общего резонансного конденсатора С1, стоящего в пучности напряжения. С периметром антенны около 5 метров радиолюбитель Стерликов А.(RA9SUS ) провел связи с 36-ю странами мощность до 30 Вт. Питание антенны производилось непосредственно от коаксиального кабеля. А подобные антенны практиковались с конца 60-х, начала 70-х годов прошлого века. Эквивалентная схема такой антенны изображена на рис. 1.б.

Хотя одновитковые ML в настоящее время широко применяются в среде радиолюбителей, особенностью двух-витковой состоит в том, что её апертура в два раза больше по сравнению с классической. Конденсатором С1 можно изменять резонанс антенны с перекрытием по частоте в 2-3 раза, а общий периметр окружности двух петель ≤ 0,5λ. Это соизмеримо с полуволновой антенной, а её малая апертура излучения компенсируется повышенной добротностью. Согласование фидера с такой антенной лучше осуществлять посредством индуктивной или емкостной связи.

Теоретическое отступление: Двойную петлю можно рассматривать как смешанную колебательную систему LL и LC-системы. Здесь для нормальной работы оба плеча нагружены на среду излучения синхронно и синфазно. Если на левое плечо подается положительная полуволна, то и на правое плечо подается точно такая же. Зародившаяся в каждом плече ЭДС самоиндукции будет по правилу Ленца противоположна ЭДС индукции, но так как ЭДС индукции каждого плеча противоположны по направлению, то ЭДС самоиндукции будет всегда совпадать с направлением индукции противоположного плеча. Тогда индукция в катушке L1 будет суммироваться с самоиндукцией от катушки L2, а индукция катушки L2 - с самоиндукцией L1. Так же, как и в LC - контуре, суммарная мощность излучения может в несколько раз превосходить входную мощность. Подача энергии может осуществляться на любую из катушек индуктивности и любым способом.

Преобразуя антенну из прямоугольной формы в круглую(рис.1.а), мы получаем антенну, изображённую на рис.2.а. Справедливо считается, что круглая форма магнитной антенны эффективнее, чем прямоугольная.

Постепенно упростился конструктив рамки L1 и L2, их стали включать в виде восьмёрки, на рисунках 2.а. и 2.б. Так появилась двух-рамочная ML в виде восьмёрки. Назовём её условно ML-8.

У ML-8 в отличии от ML появилась своя особенность, - у неё может быть два резонанса, колебательный контур L1;С1 имеет свою резонансную частоту, а L2;С1 имеет свою. В задачи конструктора входит добиться единства резонансов и максимального КПД антенны, следовательно, изготовление петель L1 и L2 должны быть одинаковы. На практике инструментальная погрешность в несколько сантиметров изменяет ту, или другую индуктивность, частоты настройки резонансов расходятся, а антенна получает определённую дельту по частоте. Иногда конструктором это делается умышленно. Особенно это удобно делать у многовитковых петель. На практике ML-8 активно используют LZ1AQ ; K8NDS и др. однозначно утверждая, что такая антенна работает значительно лучше одно-рамочной, а изменение её положения в пространстве можно легко управлять пространственной селекцией, что подтверждает фото ниже по тексту антенны на 145МГц.

Предварительные расчёты показывают, что у ML-8 для диапазона 40 метров, диаметр каждой петли при максимальном КПД составит чуть меньше 3-х метров. Понятно, что такую антенну можно устанавливать только на улице. А мы мечтаем об эффективной ML-8 антенне для балкона или даже для подоконника. Конечно, можно уменьшить диаметр каждой петли до 1 метра и настроить резонанс антенны конденсатором С1 на необходимую частоту, но КПД такой антенны упадёт более чем в 5 раз. Можно пойти другим путём, сохранить расчётную индуктивность петли, используя в ней не один, а два витка, оставив резонансный конденсатор с тем же номиналом. Несомненно, что апертура антенны уменьшится, но количество витков «N» частично возместит эту потерю, согласно представленной ниже формулы:

Из приведённой формулы видно, что количество витков N является одним из множителей числителя и стоит в одном ряду, как с площадью витка-S, так и, с его добротностью-Q.

К примеру, радиолюбитель OK2ER (см. Рис.3) посчитал возможным использовать 4-х витковой ML диаметром всего 0,8м в диапазоне 160-40м.

Автор антенны сообщает, что на 160 метров антенна работает номинально и больше используется им для радионаблюдения. В диапазоне 40м. достаточно воспользоваться перемычкой, уменьшающей рабочее количество витков вдвое. Обратим внимание на используемые материалы, - медная труба петли взята от водяного отопления, клипсы, соединяющие их в общий монолит, используются для монтажа водопроводных пластиковых труб, а герметичный пластиковый ящик приобретён в магазине электрики. Согласование антенны с фидером емкостное, и наверняка по одной из представленных схем, см. Рис.4.

Кроме выше сказанного, нам нужно понимать, что отрицательно влияет на добротность-Q антенны в целом:

Из приведённой формулы, мы видим, что активное сопротивление индуктивности Rк и емкость колебательной системы Ск должны быть минимальными. Именно по этому, все ML делают из медной трубы, как можно большего диаметра, но есть случи, когда полотно петли делают из алюминия, а добротность такой антенны и её КПД падает от 1,1 до 1,4 раза.

Что касаемо емкости колебательной системы, то тут всё сложнее. При неизменном размере петли L, к примеру на резонансной частоте 14МГц, емкость С составит всего 28пФ, а КПД=79%. На частоте 7МГц, КПД=25%. Тогда как на частоте 3,5МГц при ёмкости в 610 пФ, её КПД=3%. По этому ML используют чаще всего на два диапазона, а третий (самый низкий) считается просто обзорным. Следовательно, при расчётах мы будем «плясать от печки», т.е. от выбранного радиолюбителем наивысшего диапазона с минимальной ёмкостью С1.

Диаграмма направленности ML-8 остаётся точно такой, как и у варианта ML. У обоих вариантов антенн полностью сохраняется восмёрочная диаграмма направленности и соответствующая поляризация. На фото, при помощи газоразрядной лампы наглядно показаны уровни излучения антенны с разных сторон.

Проектируем антенну на диапазон 20м .

Теперь мы вооружены начальными знаниями о проектировании ML-8 и попробуем рассчитать вручную свою антенну.

Длина волны для частоты 14,5 МГц составляет (300/14,5) - 20, 68м.

Длина окружности каждой четверть-волновой петли L1; L2 составит 5,17м. Примем -5м.

Диаметр рамки составит: 5/3.14 - 1,6м.

Вывод: Одиночная петля ML может и впишется в интерьер балкона, но ML-8 вряд ли…

Свернём каждую петлю вдвое, но её диаметр, при сохранении заданной индуктивности (4мкГн) будет несколько отличаться в меньшую сторону. Прибегнем к достаточно популярному калькулятору радиолюбителя и определим геометрические размеры двух-витковой петли с такой же индуктивностью.

В соответствии с расчётами параметры каждой петли будут следующими: При диаметре полотна (медной трубы) в 22мм, диаметр двойной петли составит 0,7м, расстояние между витками -0,21м, индуктивность петли составит 4,01мкГн. Необходимые расчётные параметры петли на другие частоты сведены в таблицу 1.

Таблица 1.

Частота настройки (МГц)

Емкость конденсатора С1 (пФ)

Полоса пропускания (кГц)

Примечание: антенна ML-8 имеет не только расширенную полосу пропускания, но и повышенное усиление.

В высоту такая антенна составит всего 1,50-1,60м. Что вполне приемлемо для антенны типа - ML-8 балконного варианта и даже антенны вывешенной за пределы окна жилого многоэтажного дома. А её монтажная схема будет выглядеть как на рис. 6.а.

Питание антенны может быть с емкостной или с индуктивной связью. Варианты емкостной связи изображены на рис.4 и могут быть выбраны по желанию радиолюбителя.

Наиболее бюджетный вариант, это индуктивная связь. Не стоит повторяться в схематичном изображении петли связи, она совершенно идентична как у антенн типа- ML за исключением подсчёта её периметра.

Расчёт диаметра(d) петли связи ML-8 производится из расчётного диаметра двух петель.

Длина окружности двух петель составляет после пересчёта 4,4*2 = 8,8 метров .

Рассчитаем мнимый диаметр двух петель D = 8,8м /3,14 = 2,8 метра.

Рассчитаем диаметр петли связи-d= D/5. = 2,8/5 = 0,56 метра.

Поскольку в данной конструкции мы используем двух-витковую систему, то и петля связи должна иметь тоже две петли. Скручиваем её вдвое и получаем двух-витковую петлю связи диаметром около 28см. Подбор связи с антенной осуществляется в момент уточнения КСВ в приоритетном диапазоне частот. Петля связи может иметь гальваническую связь с точкой нулевого напряжения (рис.6.а.) и располагаться ближе к ней.

Элементы настройки и индикации антенны

1. Для настройки в резонанс магнитной антенны, лучше всего использовать вакуумные конденсаторы с большим пробивным напряжением и высокой добротностью. Более того, используя редуктор и электропривод, его настройку можно осуществлять дистанционно.

Мы проектируем бюджетную балконную антенну, к которой можно подойти в любой момент, изменить её положение в пространстве, перестроить или переключить на другую частоту. Если в точки «а» и «б»(см.Рис.6.а.) вместо дефицитного и дорогого переменного конденсатора с большими зазорами подключить ёмкость изготовленную из отрезков кабеля RG-213 с погонной ёмкостью 100пФ/м, то можно моментально изменять частоту настройки, а подстроечным конденсатором С1 уточнять резонанс настройки. Кабель-конденсатор можно скрутить в рулон и герметизировать любым из способов. Такой комплект емкостей можно иметь на каждый диапазон отдельно, а включать в схему посредством обычной электрической розеткой в паре с электрической вилкой. Примерные ёмкости С1 по диапазонам указаны в таблице1.

2. Индикацию настройки антенны в резонанс лучше производить прямо на самой антенне (так нагляднее). Для этого достаточно не далеко от катушки связи на полотне 1 (точка нулевого напряжения) намотать плотно 25-30 витков провода МГТФ, а индикатор настройки со всеми его элементами герметизировать от осадков. Простейшая схема изображена на рис.7.

Электрический излучатель , это ещё один дополнительный элемент излучения. Если магнитная антенна излучает электромагнитную волну с приоритетом магнитного поля, то электрический излучатель будет выполнять функцию дополнительного излучателя электрического поля-Е. По сути он должен заменить начальную ёмкость C1, а ток стока, который ранее бесполезно проходил между закрытыми обкладками С1, теперь работает на дополнительное излучение. Теперь доля подводимой мощности дополнительно будет излучаться электрическими излучателями, рис. 6.б. Полоса пропускания увеличится до пределов полосы радиолюбительского диапазона как в ЕН-антеннах. Емкость таких излучателей невысока (12-16пФ, не более 20-ти), а потому их эффективность на низкочастотных диапазонах будет невелика. Ознакомиться с работой ЕН-антенн можно по ссылкам:

Антенна типа ML-8 радио-наблюдателя значительно упрощает конструкцию в целом. В качестве материала петель L1;L2 можно применять более дешёвые материалы, например трубу ПВХ с алюминиевым слоем внутри для прокладки водопровода диаметром 10-12мм. Вместо высоковольтных конденсаторов можно применять обычные, с малым ТКЕ, а для плавной настройки на частоту использовать сдвоенные варикапы с управлением с места радионаблюдения.

Заключение

Все мини-антенны, какими бы они небыли, по отношению к простым натяжным и классическим антеннам требуют больших трудо-затрат и слесарных навыков. Но отсутствие возможности устанавливать наружные антенны радиолюбители вынуждены пользоваться как ЕН, так ML-антеннами. Конструктив двух-витковых Magnetic Loop удобен тем, что все элементы настройки, согласования и индикации можно разместить в одном герметичном корпусе. Саму антенну от привередливых соседей всегда можно спрятать одним из доступных способов, отличный пример на фото ниже.

Опубліковано: 31 березня 2016

Часть первая. Я уже 5 лет работаю в эфире только на магнитную антенну. Причин этому было несколько: главная та, что нет места для того, чтобы натянуть хоть какую-нибудь “веревку”, а следующее – это то, что я понял - “правильная ”Магнитная рамка" далеко не хуже, а то и, во многих случаях, даже лучше любой проволочной антенны. Когда, еще в Харькове я экспериментировал с магнитной рамкой, у меня было недоверие к этой антенне, хотя еще там на "магнитку" я принимал лучше, чем на полноразмерную "дельту" на диапазоне 160 м. Я тогда сделал тоже много ошибок, о чём и сам не знал.

Тогда у меня была полноразмерная вертикальная "дельта" на 160 метров, растянутая между двумя 16-ти этажками. Я, в основном, работал на 160 м. Как-то занялся и сделал, на скорую руку, приемную магнитную антенну на этот диапазон. При испытании днем, в квартире на 8-м этаже в железобетонном доме, уверенно принимал станцию, находящуюся в 110 км от Харькова, в то время как на дельту я слышал только присутствие станции и ни одного слова принять не мог. Я был поражен, но вечером, когда все пришли с работы и включили телевизоры, я на магнитную рамку ничего вообще не слышал, сплошное жужжание. На этом мой первый опыт и был закончен.

И вот уже здесь, в Торонто, мне снова пришлось заняться магнитными антеннами, но теперь уже и передающими. Сначала у меня на балконе был диполь на 20 м. Европа на 20 м отвечала, но слабовато. Только те, у кого "Яги" или штырь. А когда поставил "Магнитку", то начали отвечать сразу и не только те, что с "Ягами". Пошли связи со станциями, у которых и диполи и "инвертеры" и "веревки". Потом я диполь переделал в дельту. Получился периметр 12.5 м, поставил удлиняющую катушку в 50 см от горячего конца дельты. Теперь дельта стала строиться тюнером от 80 м до 10м. По шумам дельта намного тише диполя, но с "магниткой" сравнивать трудно. Бывают случаи, когда "магнитка" берет больше шумов, а бывает и наоборот. Это зависит от источников шума. Есть связи с Европой и на дельту, но отвечают намного хуже. Магнитка все-таки выигрывает. Я где-то читал, что вертикально расположенная магнитка имеет угол излучения к горизонту ниже 30 градусов.

Моя первая антенна таких размеров: наружный диаметр её трубы - 27 мм (дюймовая медная труба), диаметр антенны по углам - 126 см, диаметр антенны по серединам противоположных сторон - 116 см (Замерялось по оси трубы). Уголки (135 градусов) - тоже медные. Все пропаяно. Вверху антенны есть разрез по середине стороны трубы, зазор около 2,5 см. Верху антенны в пластиковой коробке конденсатор переменной ёмкости - "бабочка" с двигателем постоянного тока и редуктором. Статорные пластины припаяны к медным полосам, которые, в свою очередь, припаяны к трубе по разные стороны зазора, ротор не задействован (токосъемов быть не должно). Емкость переменного конденсатора 7 - 19 пф. Зазор между пластинами - 4-5 мм. Этой емкости хватает, чтобы настраивать антенну на диапазонах 24 МГц и 21 МГц. На 18 МГц нужна дополнительная емкость 13 пФ, на 14 МГц - 30 пФ, на 10 МГц - 70 пФ, на 7 МГц - 160 пФ. Для этих емкостей по краям разреза трубы впаяны зажимы (видно на фото), которыми плотно прижимаются выводы дополнительных конденсаторов (чем плотнее, тем лучше). Такие меры предосторожности нужны при передаче. При 100 Вт, в режиме передачи, на обкладках конденсатора напряжение достигает 5000 вольт, а ток в антенне - до 100 А. Диаметр петли связи 1/5 диаметра антенны. Петля связи (петля Фарадея) изготовлена из кабеля, с антенной контакта нет. Питание антенны - 50-омным кабелем произвольной длины.

Но потом я поменял место жительства и, на новом QTH, эта антенна оказалась слишком большой. Балкон имеет металлическое ограждение, и, поэтому, внутри балкона был слабый прием. Нужно было выносить антенну за пределы балкона и я сделал следующую магнитную рамку.

Её рамка изготовлена из медной трубы диаметром 22 мм, диаметр антенны – 85 см. Работает от 14 до 28 МГц. По расчетам для таких антенн, эта рамка должна работать немного хуже предыдущей, потому что и труба тоньше, и диаметр рамки меньше, но практическое использование показало, что вторая антенна ничем не уступает большей рамке. И мое заключение - цельная труба все-таки лучше, чем спаянная из нескольких кусков. При огромных токах малейшее сопротивление на переходах медь–олово и наоборот, а также на зажимах дополнительных конденсаторов, дает большие потери. При приеме это неощутимо, а вот при передаче идет потеря мощности.

Я работаю в цифровых видах, в основном в JT65. На меньшую антенну на 28 МГц на 5 ваттах работал с Австралией (15000- 16000км), ЮАР (13300 км через мой дом). Потом я переделал первую рамку, в которой вместо конденсатора "бабочка" поставил вакуумный конденсатор.

И, к моему удивлению, антенна стала строиться на 28 МГц и у меня добавился диапазон 10 МГц. Хотя на этом диапазоне, по расчетам, эффективность составляет 51%, я на 20 ваттах в JT65 спокойно проводил связи с Европой. Переделка была сделана буквально 2-3 недели назад, поэтому полная картина ещё у меня не сложилась. Но ясно одно, - антенны работают. Управляю перестройкой конденсатора дистанционно, со своего рабочего места. Настройка быстрая, попадаю в резонанс с первого, максимум - со второго раза, т.е. больших неудобств при перестройке не испытываю. А при работе цифровыми видами перестраиваться по диапазону вообще не приходится.

Xочу сформулировать несколько важных критериев, которые надо учитывать при построении эффективной передающей магнитной антенны. Может, кому-то мой опыт поможет и человек не будет тратить много времени и средств, как я, тем более, что при неправильном подходе к построению магнитной рамки, может пропасть интерес к такого типа антеннам, - по себе знаю это. Но, правильно сделанная антенна, действительно работает хорошо. Подчеркиваю, что это только мои соображения, которые основываются на моем личном опыте в построении и использовании магнитных рамок. Если у кого будут какие-то замечания или дополнения или вопросы, прошу писать мне на Е-Mail.

1. Полотно антенны должно быть цельным.

2. Материал – медь или алюминий, но алюминий дает потери при передаче, около 10% больше при одинаковых размерах, чем медь (по данным различных программ для расчета магнитных антенн).

3. Форма антенны - лучше круглая.

4. Площадь полотна антенны должна быть как можно большей. Если это труба, то диаметр трубы должен быть как можно большим (как следствие, наружная площадь трубы будет большей), если же это - полоса, то ширина полосы должна быть как можно большей.

5. Полотно антенны (труба или полоса) должны подходить непосредственно к переменному конденсатору без каких-либо промежуточных вставок из проводов или полос, припаянных к полотну антенны и к конденсатору. Другими словами нужно избегать паек и "скруток" в полотне антенны, где только это только возможно. Если же необходимо что-то припаять, то лучше использовать сварку, для меди это - медную сварку, для алюминия – алюминиевую, чтобы избежать неоднородностей металла в полотне антенны.

6. Полотно антенны должно быть жестким, чтобы не было деформации, например от ветровых нагрузок.

7. Конденсатор должен быть с воздушным диэлектриком и с большим зазором между пластинами, еще лучше - вакуумный.

8. Конденсатор с электродвигателем у меня закрыты в пластмассовую коробку. Внизу коробки сделаны два небольших отверстия для слива конденсата.

9. Токосъемов на конденсаторе быть не должно, поэтому нужно использовать конденсатор типа "бабочка" у которого статорные пластины подключены к разным концам полотна антенны, а ротор ни к чему не подключен.

10. Петля связи имеет диаметр 1:5 от диаметра антенны, Надо учесть, что при уменьшении диаметра петли связи увеличивается добротность антенны, а значит и её эффективность, однако, сужается полоса пропускания антенны. В интернете находил информацию, что можно использовать петлю связи диаметром от 1:5 до 1:10 от диаметру рамки антенны. Я использую петлю Фарадея в качестве петли связи. Гамма согласование не использовал. Для петли связи я использую кабель с наружным диаметром 8–10 мм, у которого экран - это гофрированная медная трубка.

11. В непосредственной близости от антенны использую дроссель из кабеля - 6-7 витков этого же кабеля, намотанные на ферритовом кольце от отклоняющей системы телевизора.

12. Антенна “не любит“ вблизи себя металлических предметов, длинных проводов и т.п. - это может сказаться на КСВ и диаграмме направленности.

13. Высота магнитной антенны над землей для максимально достижимой эффективности ее работы должна быть не меньшей 0.1 длины волны самого низкочастотного диапазона этой антенны.

При соблюдении перечисленных выше требований к построению магнитной рамки, получится действительно хорошая антенна, пригодная, как для местных связей, так и для работы с DX.
По словам Leigh Turner VK5KLT: - “A properly designed, constructed, and sited small loop of nominal 1m diameter will equal and oftentimes outperform any antenna type except a tri-band beam on the 10m/15m/20m bands, and will at worst be within an S-point (6 dB) or so of an optimised mono-band 3 element beam that’s mounted at an appropriate height in wavelengths above ground.”
(Надлежащим образом расчитанная, сделанная и правильно размещенная магнитная антенна диаметром 1 м, будет эквивалентна и часто превосходить все типы антенн, исключая трех-диапазонный волновой канал на 10м/15м/20м диапазоны, и будет хуже (примерно на 6 db) оптимизированной однодиапазонной 3-х элементной антенны волновой канал, смонтированной на надлежащей высоте в длине волны над землей) Перевод мой.

Часть вторая.

Широкополосная приемная магнитная антенна

Во-первых, для антенны я использую центральную жилу кабеля, экран заземлён. Экран разорван вверху антенны на одинаковых расстояниях от усилителя. Зазор около 1 см.
Во-вторых, усилитель к антенне подключен через ШПТ (широкополосный трансформатор) на трансфлюкторе для уменьшения проникновения электрической составляющей.


(пересохраните схему на свой комп и она будет читаться лучше)
В-третьих, усилитель имеет два каскада, оба двухтактные (для подавления синфазной помехи) на малошумящих транзисторах J310. В первом каскаде в каждом плече стоят по два транзистора параллельно с общим затвором, шумы каскада уменьшаются в корень квадратный из количества параллельно соединённых транзисторов, т.е в 1,41 раза. Есть мысль поставить по 4 транзистора в плечо.
В-четвертых, питание должно быть как можно "чище", лучше всего - от батареи.

Вот, выкладываю схему антенны

Токи стоков всех транзисторов - 10-13 мА.
На диапазонах 18, 21, 24 и 28 МГц я дополнительно использую отключаемые два усилителя (16db, и 9db). Их можно включить по одному или оба сразу. И, что очень важно, на всех диапазонах, сразу после антенны, я использую дополнительные 3-контурные ДПФ (как в трансивере RA3AO). Дополнительные ДПФ нужны, так как антенна принимает и усиливает все станции от ДВ до ФМ диапазона. Все это попадает на вход приемника и может перегружать его, что выразится в увеличении шумов и ухудшении чувствительности, а не в её улучшении.

Сегодня провёл такой эксперимент. По периметру рамки антенны, с большим шагом навил толстый многожильный медный провод в изоляции. Общий диаметр провода около 5 мм. Вблизи усилителя установил двухсекционный конденсатор переменной ёмкости. Концы провода подключил к статорным секциям конденсатора. Получилась никуда не подключенная магнитная резонансная рамка. Диапазон такой конструкции получился таким: около минимума одной секции конденсатора - 20 м. Две секции в параллель - около максимума конденсатора - 80 м. Думаю, если добавить в параллель постоянный конденсатор, то и 160 м будет. Принимаемый сигнал вырос (по моим субъективным оценкам, - около 10 db минимально), помехоустойчивость антенны не ухудшилась, резонанс не острый, перекрывается весь диапазон 20 м, - перестраивать антенну нужно только при смене диапазона. Не трогая основной антенны, повысился коэффициент усиления, избирательность и, скорее всего, чувствительность.

Причем на всех остальных диапазонах антенна принимает так же как и без дополнительного перестраиваемого контура.

Долго думал, как поднять чувствительность антенны на верхних диапазонах и решил добавить еще одну резонансную рамку. Вот фото:

Диаметр дополнительной рамки получился маленьким. Резонанс довольно острый, строится от 20 МГц до 29 МГц. Ниже не пробовал, так как есть другая рамка, которая строится на нижних диапазонах. На большой резонансной рамке переменный конденсатор заменил на "галетник" с постоянными конденсаторами для удобства переключения диапазонов.

Доработал свою приемную антишумовую антенну – убрал дополнительные контура, перевернул антенну усилителем вверх, а снизу от разреза оплетки добавил два луча по 1,2 м многожильного провода. Длиннее провод у меня не получается добавить, ограничивают размеры балкона. По моему мнению, антенна стала работать намного лучше. Поднялась чувствительность на верхних диапазонах 21 - 28 МГц. Упали шумы. И еще одно замечание, - похоже, что ближние станции стало слышно потише, а уровень приёма дальних станций вырос. Но это субъективное мнение, т.к. антенна находится на балконе 5-го этажа 19-ти этажного дома. И, конечно же, есть влияние дома на диаграмму направленности.

Картинки по запросу UA6AGW:

Можно поэкспериментировать с длиной лучей, но у меня такой возможности нет. Возможно, можно будет поднять немного усиление в нужном диапазоне. Сейчас у меня максимум приема в районе 14 МГц."

Часть третья .

(Из письма) "Вчера на скорую руку сделал антенну на 10 м. Фото прилагаю.

Это переделанная антенна 20-ти метрового диапазона, которую я делал раньше. Длина лучей осталась прежней около 2,5 м, я уже точно не помню. а сама антенна получилась диаметром 34 - 35 см. Какой кусок кабеля остался, такой и использовал. В результате у меня получилось следующее. Оба конденсатора на максимуме емкости. В этом положении конденсаторов чуть-чуть не дотягивает до 28.076 Мгц. Т.е. резонанс
получается на 28140-28150 и выше по частоте. Лучи сначала хотел отрезать, но после этого не стал, т.к. частота уйдет еще выше. Петлю связи также поставил с 20-ти метровой антенны. В результате на 28076 КСВ получился 1,5 меньше никак не смог добиться. Но при этом решил попробовать работать в эфире. Работал на 8 ватт по показаниям
ваттметра SX-600. Я сравнивал прием этой новой антенны с моей широкополосной приемной антенной, разницы я практически не увидел. На мою антенну шум эфира чуточку поменьше, а сигналы станций практически одного уровня. Это все я смотрел на SDR. С утра начал работать в эфире на CQ. Я был удивлен, насколько активно мне отвечали на мои 8 ватт, и рапортами, которые мне давали. С утра проход был на Европу и это были все европейские станции. Рапорта, которые я получал в основном мне
давали, выше, чем я давал им. Теперь нужно поменять конденсаторы и укоротить лучи."

Но антенна был очень капризной в настройке, при малейшем ветерке лучи шевелились и это сказывалось на КСВ. Видно было как пляшет стрелка КСВ-метра в такт с колебаниями лучей антенны. И я стал дальше заниматься этой антенной с целью сделать ее параметры устойчивыми и сама антенна могла бы быть легко повторена. В итоге после длительных обсуждений антенны с Владимиром КМ6Z мы пришли к выводу что внутренный проводник с конденсатором там лишний (иногда может быть и вреден). Я закоротил внутренний проводник с оплеткой на обеих концах антенны и конденсатор С2 убрал. Антенна работала также. Потом по подсказке KM6Z я заменил петлю связи на гамма согласование. После тщательной настройки я увидел что сигнал с антенны вырос. Дальше, опять же по подсказке KM6Z я вместо гамма согласования применил Т-согласование или двойное гамма согласование и снижение выполнил двухпроводной 300 омной линией. Сигнал с антенны еще больше увеличился, дополнительные усилители не использую, т.к. они просто уже не нужны и я заметил что пропала помеха от соседнего компьютера, которая раньше постоянно присутствовала, хотя двухпроводная линия проходит рядом с этим мешающим компьютером. В итоге я перестроил свою метровую магнитную рамку, приделал лучи около 2-х метров, сделал Т-согласование. В результате получившуюся антенну я назвал – “МАГНИТНЫЙ ДИПОЛЬ”. Эта новая антенна имеет такие параметры – диаметр 1.05 метра, полотно антенны – медная труба даметром 18мм, конденсатор вакуумный 4-100 пф, лучи – 2.06м. Антенна работает в 4-х диапазонах 30м, 20м, 17м, 15м. Правла КСВ на 30 и 17 метрах подгоняю добавляя к лучам по 30 см провода. Работаю в цифровых видах JT9 и JT65 10-ю ватами отвечают все, слышат все (смотрю по PSK Reporter). Австралия(14000-16000 км), Новая Зеландия (около 13000 км) не проблема совсем. Есть связь с Таиландом через Северный Полюс (а это очень проблемные связи) на все тех же 10 ватах. Связи на 3000 – 5000 км даже при слабом прохождении провожу каждый день. Европа 5000 – 7000 практически каждый день. Даже поднадоели.

Статья 2. Магнитные антенны (magnetic loop):

Антенна - устройство для излучения и/или приёма электромагнитных волн путём прямого преобразования электрического тока в излучение (при передаче) или излучения в электрический ток (при приёме).

Магнитная антенна (magnetic loop) - это антенна, у которой излучение и прием электромагнитных волн осуществляется за счет магнитной составляющей, электрическая составляющая ничтожно мала и ею обычно пренебрегают.

(На форуме ОДЛР.ru в ноябре 2010 года шло обсуждение одной антенны - метёлка, для лампового приемника, с использованием балконного варианта. Я вставил свой пятачок, и получилась статья.)

И так попробую написать в стиле байка-быль.

Но у нас разговор об антеннах. Жил я тогда в военном городке Калининец, в простонародье "почтовое отделение Алабино". Каждый день по утрам, я на автобусе добирался до Голицино, на электричке доезжал до платформы Фили, далее на метро доезжал до Площади Ногина (сейчас Китай-Город). потом пешком до Покровского бульвара, в стены родной альма-матер. Вечером тот же маршрут, но наоборот. И только по пятницам было исключение из правил, была остановка в районе Фили.

Недалеко от платформы жил мой друг RA3AHQ , в миру он Болгаринов Александр (сейчас проживает в Марьино). Я брал пару "огнетушителей" и заходил в гости. У Александра был импортный трансивер фирмы Кенвуд "TS-450", по тем временам это было очень круто. Такие исключения из правил бывали практически каждую неделю, и только по пятницам. Вот однажды сидим мы, потягивая красенькое и крутим ручку верньера, слушаем разговоры радиолюбителей. Мое внимание привлекло необычное сооружение на подоконнике, я спрашиваю, вас из дас, а Саша и говорит, мол антенна это, называется магнетик луп (Magnetic loop) и показывает статью в журнале Радио № 7 за 1989 год, стр. 90, в разделе за рубежом. Одним словом, это та статья, что и привел Сергей Кашехлебов в обсуждении на форуме. Я приехал домой, у соседки выклянчил халохуп, и уже через два часа, я провел первую радиосвязь на 40 м с Питером, моя антена была смонтирована на дощечке, КПЕ прикручен винтиками к халохупу (дюраль не паяется). Это был мой первый опыт, после были и другие опыты, но об этом далее.

В 2000 году меня взяли на работу в одну фирму, которая занималась профессионально системами радиосвязи. Был один проект в Заполярье, выехали на испытания. Взяли с собой несколько типов антенн, это и традиционные треугольники, выполненные из антенного канатика, и спирально-штыревые, в основании у которых были автоматические антенные тюнеры (Icom AT-130) и одна конструкция ML (Magnetic loop), выполненная из коаксиального кабеля, оплетка ввиде гофра толщиной 30 мм. Диаметр излучателя был 4 м, закреплена антенна была на обыкновенной деревянной жерди с крестовиной, и приставлена к железному вагончику. Через определенное время выходим на связь, тестируем прохождение, составляем суточный график прохождения. И вдруг все пропало, в эфире только "белый шум", и ничего больше. Мне с базы по телефону говорят, что магнитная буря, и перерыв на неопределенное время. Я от скуки начал щелкать, переключать антенны на любительских диапазонах. Какое же было мое удивление, когда я услышал на 40 м работающих радиолюбителей. Я за микрофон и айда. У всех корреспондентов просил послушать еще две антенны, переключал на "дельту" и спирально-штыревую, а затем ML, на те антенны я не слышал ничего и меня тоже не слышали.

Позднее я уговорил коммерческого директора закупить в Германии пару антенн, хотел разных типоразмеров, но купили однотипные. В то время там было налажено производство и этим занимался Кристиан DK5CZ (царство ему небесное, замолчал ключ). Но люди и сейчас продолжают его дело. Так вернемся сюда. Немецкая конструкция была не практичная, диаметр излучателя 1,7 м, цельная, неудобная при транспортировке. В общем была изготовлена своя антенна, излучатель состоял из трех сегментов, материал АД-30 (я кусочек немецкой отвез на химический анализ), КПЕ был выполнен в виде бабочки и имел емкость от 170 до 200 пик, это позволяло перекрывать на передачу 3 любительскиз диапазона (160 м, 80 м и 40 м), при диаметре излучателя 4 м. Но это не главное, главное как работала эта антенна.

Все кто бывал у нас на коллективке наверное обращал внимание, что в непосредственной близости от радиостанции (300-500 м) полукольцом проходит три ЛЭП, одна из них 500 КВ. Так вот трескотня у нас по S-метру всегда 8-9 баллов. И вот когда я на крыше положил горизотально (на колышках высотой 1 м) ML, используя ее как приемную антенну, то.... Шумов НОЛЬ, и только полезный сигнал. Стали слышны станции, которые шли с уровнем 2-3 балла, и которые я никогда бы не услышал. Это было на 20 м диапазоне.

Второе. Наши гости подходя к школе видели на соседнем доме любительские антенны, это радиолюбитель, Александр, он любит участвовать в соревнованиях на КВ в однодиапазонном зачете, на 17-ти этажке 2 элемента Cushcraft 40_2CD, т.е. сидит себе на 40 м и всё, а у нас полный затык. На 40 м S-метр упирается в противоположную стенку, и на других бендах повыше не лучше. Так продолжалось несколко лет. И что вы думаете. Когда поставили ML по приему, так он работает в начале SSB участка, 7,045 Мгц, а мы в конце, 7,087 Мгц, мы его не ощущаем, как будто его нет.

Были еще испытания на реке Северная Двина. На теплоходе была смонтирована антенна ML (с диаметром излучателя 1,7 м - та самая - немецкая). Это было в конце мая, мы шли в низ по течению в районе г. Котлас, где-то в 3.00 на 40 м слышу работает на Латинскую Америку ER4DX, Василий. У него антенна в несколько элементов и "добрый" помощник. Я напросился в группу, и по S-метру принимал сигналы латино-американских станций на 7 баллов, и рапорт от них получал 7 баллов.

Да, кстати вот ссылка на сайт: сайт DK5CZ там все есть. И еще есть программка MagLoop4, позволяющая расчитывать магнитные рамки, которые могут выполняться ввиде круга, треугольника, квадрата, да вот ссылка, тестируйте сами: Программа для моделирования Magloop4 Если возникнут вопросы по пользованию программой, могу провести так сказать мастер-класс, или открытый урок. P.S. В качестве приемний антенны использовалась конструкция выполненная из медной трубки 10 мм (водопроводная) и конденсатор был переменный от лампового радиоприемника (настроенный один раз на средину диапазона). А в конце статьи выложу скан инструкции по ML.

Ответ одного из пользователей ОДЛР. Воодушевленный беспрецедентным академическим материалом Павла, вспомнил о спортивном снаряде (гимнастическом металлическом обруче), изготовленным знамениой ракетно-космической фирмой им.Хруничева и без надобности покоящимся за диваном... Решил поэкспериментировать на скорую руку... В течение часа ремесленных работ изготовил из нее антенну, изображенную на прилагаемых фото... Шунтирующий конденсатор (0,01 мкф) подобрал по максимуму и чистоте слабого полезного сигнала... Результат замечательный! Прием отличный! А если вынести конструкцию за пределы балкона, то лучшего и не нужно! Концепция верная! Очень доволен. Спасибо Павел! Тема стремительно продвинулась уже к обмену конкретными практическими результатами... .

Мой ответ. Александр. Все это хорошо, что вы сделали, но мне кажется это будет иметь такой же эффект, если вы поставите емкость в обыкновенный треугольник или квадрат, выполненные из обычной проволоки. Похоже конденсатор играет роль шунта или фильтр-пробки (мне так кажется). В ссылке на сайт DK5CZ приводится схематическая конструкция антенны MLoop. Она состоит из излучателя и петли возбуждения, их размеры соответственно равны 5:1, вот смотрите на рисунок. Петля выполнена из коаксиального кабеля, и она электрически не связана с излучателем (в моих конструкциях), и свой первый халохуп я делал именно так же. Но при других экспериментах вместо петли делалось гамма-согласование. В других случаях роль конденсатора выполнял воздушный зазор в месте распила излучателя, тогда периметр излучателя был равен половине длины волны, кстати это подтверждает и программа.

P.S. Мой знакомый экспериментировал с этими антеннами на диапазоне 145 Мгц, сделал двойную антенну, т.е. два излучателя, расположенные на одной траверсе (Если смотреть сверху, то конструкция похожа на два колеса на одной оси). Хашником контролировали. Результат о-о-очень интересный, я имею ввиду и диаграмму направленности. И в сравнении с многоэлементной антенной, эта конструкция не проиграла. Возвращаясь к конструкции самой антенны, это мое личное мнение, что именно система запитки антенны, будь то петля или другой вид и дает тот эффект, что в сигнале электрическая составляючая ничтожно мала и ею пренебрегают, т.е. присутствует в основном магнитная составляющая. Отсюда и название антенны - Магнитная рамка. Обратите внимание, что петля возбуждения выполнена специфически с разрезами.

Ответы пользователей. Павел, бывал у тебя не единожды, но вот антенным хозяйством не интересовался, а зря... Просвети народ, фото в студию, пожалуйста.

Поскольку в те времена не было цифрового фотоаппарата, то я пользовался "мыльницей". Кстати я забыл. Был еще один опыт использования. Я защищал диплом в ВИА как раз с применением антенн такого типа, диплом имел гриф "секретно", но думаю, что за давностью лет можно и сказать об этом, тем более есть одно фото, это фрагмент пояснительной записки при защите. Это было в мае 1990 года.

Затем подготовка к полевым соревнованиям "Радиоэкспедиция Победа". Апрель 2000 года, крыша школы (которая впоследствии стала испытательным полигоном). А это выезд под Волоколамск, к памятнику воинам-саперам (8-9 мая 2000 года) работали позывным RP3AIW. Это как раз антенна из кабеля "на кресте".

В сентябре 2000 года я уже был в Заполярье. На первом фото монтаж спирально-штыревой антенны с тюнером (9 м высотой, самодельная) и опечатка на надписи фотографии, не 2001, а 2000. В дали видна осветительная мачта, между двумя такими была смонтирована дельта (треугольник) с периметром 90 м. На втором фото - магнитная рамка, располагается горизонтально на расстоянии 80 см от железной крыши вагончика нефтяников.

Февраль 2001 года, опять испытания. Крыша школы. Антенна диаметром излучателя 4 м. Первая антенна, заказанная на производстве. В эфире я проводил эксперименты, как по расстоянию, так и в сравнении с другими типами антенн, поэтому был "популярен" в эфире и многие радиолюбители с удовольствием приезжали посмотреть и принять участие в этом процессе. Кстати на основном сайте, в гостевой книге есть отзыв одного из радиолюбителей.

Июнь 2001 года, испытания приемной антенны, я о ней писал, выполнена из медной трубки и перевернута (кондер внизу, вакуумный).

Июль 2001 года, на одном из объектов (на надписи фото тоже опечатка, не 2000, а 2001 год).

Август 2001 года. Получена антенна АМА-5, от DK5CZ. Рядом выполненная в России диаметром 1,7 м (видны болты на излучателе, в местах соединения сегментов) и "горизонтально" расположена диаметром 4 м (улучшенная, точнее усовершенствованная модель).

Июнь 2002 года. Плещеево озеро, слет радиолюбителей центральной части России. Привезли антенну диаметром излучателя 4 м, утановили возле палатки и сравнивали со всеми имеющимися у членов слета (а были и диполя и J-антенны, и треугольники).

Июль 2002 года. Река Северная Двина. Первоначально привезли антенну диаметром излучателя 4 м, но позднее заменили на антенну диаметром излучателя 1,7 м. Причина, не проходили по высоте под мостами.

В сентябре испытания с антенной диаметром излучателя 1,7 м на буксире "Лимендский комсомолец" (Лименда - это речка, впадающая в Северную Двину) в районе города Котлас.

Конденсаторы переменной емкости. Первое фото - это с антенны АМА-5, остальные нашего производства.

Были изготовлены автоматические тюнеры - точнее написана программа для однокристального процессора, команды которого управляют электромотором - поворотом конденсатора.

Появилась книжка инженера С.И. Шапошникова «Радиоприем и радиоприемники» из серии Библиотека радиолюбителя, издание Нижегородской радиолаборатории им. В.И. Ленина, 1924 год.

В данной книге есть раздел об антеннах, я его перепечатываю и выложу скан рисунка.

"Прием без антенн"

раздел "Прием без антенн"

Прием на рамки . Если на деревянную рамку, изображенную на рис. 27а, намотать некоторое количество витков изолированной проволоки, к концам которой присоединить переменный конденсатор С, то получится замкнутый колебательный контур, могущий колебаться волной, длина которой зависит от емкости С и самоиндукции L рамки. Такой контур, располагаеый в вертикальной плоскости и называемый приемной рамкой, обладает следующими свойствами:

  1. Магнитные линии электромагнитной волны, пересекая вертикальные части витков, индуктируют в рамке вынужденные колебания, на которые можно настроить собственную волну рамки конденсатором С. Если к конденсатору С присоединить детекторную цепь, то на такую рамку можно принимать работу передатчиков.
  2. Рамка обладает направляющим действием, т.е. будучи установлена, как показано на рис. 27, и настроена на приходящую волну, она лучше всего принимает сигналы в направлениях, указанных стрелками 1 и 2, т.е. волну, приходящую в плоскость рамки, и совсем не принимает волн, приходящих в направлениях 3 и 4, т.е. волн, приходящих перпендикулярно плоскости рамки. Таким образом, установив рамку в некотором направлении, при котором получается наиболее громкий звук, мы можем определить в каком направлении от нее находится передающая станция.

Рамки обладают своими достоинствами и недостатками. К первым относится их легкое устройство, малый размер, позволяющий устанавливать их дома, направляющее их действие и т.п. Главный недостаток их тот, что они воспринимают слишком мало энергии, так что детектор ими может принимать лишь на небольшие расстояния. Однако при работе с хорошим усилителем мощные передатчики принимаются посредством рамок на тысячи верст.

Приведем некоторые размеры рамок, считающиеся наивыгоднейшими. Рамка квадратная, со стороной = 70 см. Для волны 300 м кладется 4 витка; 600 м - 7 витков; 800 м - 10 витков; 1200 м - 14 витков; 1600 м - 20 витков; 2500 м - 40 витков, и т.д. Виток от витка укладываются на расстоянии одного сантиметра. Емкость конденсатора С должна быть около 1000 пф.

Рамки могут быть разнообразной величины и формы. Наиболее практичной считается рамка в виде ромба, поставленная на угол, рис. 27в.

(Ссылки на инфо из интернета)

  • Magnetic Loop Antennas - by PY1AHD (a superb loop site!) Бразилия.
  • Stealth ST-940B Mobile HF NVIS Magnetic Loop Antenna - by Stealth Telecom. Объединенные Арабские Эмираты.
  • HF LOOP AND HALF-LOOP ANTENNAS - by STAREC. Франция.
  • PA3CQR Magnetic loop antenna page - by PA3CQR. Нидерланды.
  • 80m Frame Antenna - by SM0VPO. Швеция.

Кольцо — самая эффективная и распространенная конструкция рамочной антенны, так как по сравнению с прочими геометрическими фигурами оно покрывает наибольшую площадь при равных периметрах. Восьмиугольник весьма близок к кольцу по эффективности, квадрату же или ромбу свойствен меньший КПД.

Обычно подстроечный конденсатор переменной емкости размещается в верхней части вертикально установленного кольца, которое заземляется в нижней противоположной точке для защиты от грозы.

Ради удобства настроек в некоторых версиях антенны конденсатор монтируют внизу кольца и часто — в корпусе вместе с согласующим устройством.

Дистанционное управление подстроечным переменным конденсатором осуществить нетрудно, и потому в стационарных кольцевых антеннах подстроечные конденсаторы размещают в верхней части кольца. С легкостью справляются и с гальванической связью.

Одно из решений представлено на рисунке выше в виде Т-согласования с последующим симметрирующим трансформатором.

Несимметричный вариант с гамма-согласованием имеет вид:

В обоих случаях длина отрезка L, в гамма согласовании, должна составлять около 0,1 от длины окружности кольца, а расстояние y — около λ/200.

Индуктивная связь и согласование также широко распространены благодаря простоте реализации.

Чаще всего применяется вариант такого типа:

Внутри большой петли размещают малую индуктивную петлю с соотношением диаметров 5:1. Благодаря симметричной связи через симметрирующий трансформатор на кольцевом сердечнике 1:1 можно подсоединять 50-омный коаксиальный кабель.

При несимметричной связи коаксиальный кабель подключается непосредственно как на рисунке выше (б).
Электрически целесообразный способ индуктивной связи представлен на рисунке (в). Здесь показан только связующий виток из коаксиального кабеля с разрывом
его экрана посреди витка. Экран части правой половины шлейфа припаивается к основанию большого кольца, и в этом месте антенну заземляют. Слегка деформируя шлейф из коаксиального кабеля, добиваются тонкой настройки антенны на минимальный КСВ. Считается, что диаметр d должен быть тем меньше, чем выше рабочая добротность антенны.

Публикации по теме