Навигационные инструменты разных эпох мореплавания. Определение местоположения судна

Определение местоположения судна

Поговорим о нескольких простейших, но очень нужных, способах определения местоположения яхты в море. Задача простая, но крайне важная для вашей безопасности. Ее можно условно разделить на два случая:

1. Вы ведете яхту в видимости берегов и навигационных знаков, которые обозначены на вашей карте.
2. Вы ведете яхту в открытом море в отсутствии всяких ориентиров.

К слову, если курс проходит вблизи берега, но в условиях ограниченной видимости (например, ночью или в плотном тумане), то способ определения местоположения будет относиться скорее ко второму случаю.

Итак, мы совершаем прибрежное плавание и яхта не теряет из виду сушу (или знаки навигационной обстановки). Для нас важно, что в момент определения нашего местоположения мы видим необходимое количество ориентиров, которые можем идентифицировать на карте.

И еще вопрос, который необходимо обсудить. Мы живем в XXI в., и развитие электронных средств навигации достигло фантастических высот. И если полагаться только на электронику, то судовождение оказывается не сложнее компьютерной игры – требуется лишь изучение прилагаемой к прибору инструкции.

Но обратите внимание на одно обстоятельство: по законам любой страны все суда, выходящие в море, – торговые, военные и спортивные, парусные и моторные – обязаны иметь на борту полный комплект традиционных средств навигации: комплект бумажных карт, прокладочный инструмент, секстан, лоции и т.д. Штурманы, шкиперы и капитаны обязаны вести прокладку на традиционных картах во время любого морского перехода. Должен сказать, что я полностью согласен с этим порядком. Необходимо понимать, что море – это враждебная человеку стихия, и он находится с ней один на один.

Неужели можно безоговорочно доверить жизнь людей на борту, жизнь и судьбу яхты небольшой пластиковой коробочке с электронной начинкой?! Морской воздух – это очень агрессивная среда, которая рано или поздно выведет из строя тонкую микроэлектронику; рано или поздно вы забудете взять на борт запасной комплект батарей для нее; на GPS могут попасть морские брызги, дождь; в мачту может ударить молния и вывести из строя всю электронику, – в конце концов, по теории надежности любой прибор может выйти из строя сам по себе – и что делать?

Жизнь показала, что знание навигации и устойчивые навыки в кораблевождении традиционными методами просто необходимы любому человеку, который выходит в море как штурман, шкипер или капитан.

Поэтому перейдем, собственно, к способам определения местоположения судна традиционными методами.

1. Счисление, или Dead Reconing

Представьте себе, что яхта идет в открытом море и нет никаких видимых ориентиров. Чтобы понять принцип метода, предположим, что в 10.00 наша яхта находилась в точке А, которую мы нанесли на карту. Скорость яхты 7 узлов (мы ее прочитали с судового лага), истинный курс 045ºТ (считали с путевого компаса и учли магнитное склонение). Мы хотим определить, где будет находиться яхта в 11.30. Естественно, по условиям нашей задачи с 10.00 до 11.30 яхта идет, не меняя курса (045ºТ) (см. рис. 1 ), с постоянной скоростью (7knt ). Пройденный путь вычисляем по элементарной формуле:
D = S х t , где
D – путь, пройденный в милях;
S – скорость лодки в узлах;
t – время в часах.
D = 7knt х 1,5 = 10,5 n.m.

Рис. 2

Это и есть в простейшем случае счисленное местоположение нашей яхты (обозначается знаком + и буквами DR с указанием времени).

Рис. 3

Но этот способ можно применять в том случае, когда точно известны предыдущие координаты яхты (fix ), ее скорость и курс, а также отсутствует дрейф, связанный с ветром и течениями.

2. Estimate Position (EP)

В случае если известны направление и скорость течения, мы можем простым графическим методом нанести точку местоположения яхты на карту. Допустим, при вычислении DR в п.1 (см. рис. 4 ) мы узнали из атласа приливных течений, что с 10.00 до 11.30 в районе плавания существовало течение скоростью 3 узла и направлением 110ºТ. Пожалуйста, запомните, что течение всегда течет «в» указанном направлении, в отличие от ветра, который всегда дует «из» указанного направления.

Рис. 4

Итак, используя принцип независимости движений, известный из школьного курса физики (он говорит о том, что любое движение тела можно представить как векторную сумму простых прямолинейных перемещений), из точки DR 11.30 отложим с помощью прокладчика направление 110ºТ (см. рис. 5 ). Обратите внимание, что вектор течения обозначается именно так, как на рисунке.

Рис. 5

Затем вычислим длину вектора, время движения яхты: 1,5 часа = 90 min, скорость течения – 3 узла (knts ). Значит, за время движения с 10.00 до 11.30 яхта сместилась в направлении 110ºТ под влиянием течения на: 3 узла х 1,5 часа = 4,5 морских мили. Откладываем на отрезке измерителем 4,5 n.m. и получим точку EP 11.30 (стандартный символ) (см. рис. 6 ). Это и есть вычисленное положение нашей яхты в 11.30, которая с 10.00 из точки А двигалась курсом 045ºТ со скоростью 7 knt под влиянием течения направлением 110ºТ и скоростью 3 knt . Дальнейшую прокладку курса мы должны делать уже из точки EP 11.30. Также мы выполнили задачу – мы знаем, где находится яхта.

Рис. 6

3. FIX

Определенное местоположение судна в данный момент времени обозначается английским термином FIX . Существует много способов его определения. Мы рассмотрим наиболее широко применяемый и общий способ: нахождение FIX – A по двум и более компасным пеленгам (лучше трем).

Допустим, наша яхта идет курсом 0ºЕ (360º) со скоростью 7 knots . Вы проходите участок берега, где ясно и отчетливо видите маяк А , маяк В и небольшой остров С . Время 10.15, а последняя EP была определена в 9.30 (см. рис. 7 ).

Рис. 7

Обратившись к карте района, вы должны абсолютно безошибочно идентифицировать выбранные ориентиры А, В и С с их изображением на карте. (Все наземные объекты, изображенные на навигационной карте, ясно видны с моря (днем и ночью) и могут использоваться для навигации.) На картах всегда изображаются видимые с моря маяки, водонапорные башни, высокие, отдельно стоящие здания, радиомачты и т.д.

С помощью ручного компаса-пеленгатора возьмем магнитные пеленги на выбранные ориентиры А, В и С (см. рис. 8 ). Мы понимаем, что, для того, чтобы нанести на карту магнитный пеленг, мы должны преобразовать его в истинный, используя поправку на магнитное склонение.

Рис. 8

Напомним правило: при переходе от магнитного пеленга к истинному западное склонение вычитается, а восточное прибавляется.

Давайте положим, что после того, как мы взяли пеленги поочередно на маяк А , маяк В и остров и пересчитали их в истинные пеленги, мы получили следующие значения:

Истинный пеленг на маяк А – 045ºТ
Истинный пеленг на маяк В – 90ºТ
Истинный пеленг на остров С – 135ºТ

С помощью прокладчика отложим эти истинные пеленги от наших объектов А, В, С, как показано на рис. 9 .

Рис. 9

Как мы видим, пеленги пересеклись не в одной точке, а образовали некий треугольник (hat ). Это произошло из-за небольших ошибок во взятии пеленгов. Зато можно сказать, что яхта находится в 10.15 где-то внутри этого треугольника. Для наших целей такой точности вполне достаточно – мы нашли FIX . Запомните, пожалуйста, несколько правил, которые необходимо соблюдать для того, чтобы FIX вашей яхты было как можно точнее:
1. выбирайте для взятия пеленгов ближайшие, более отчетливо видимые объекты;
2. старайтесь, чтобы углы между объектами были не слишком острыми или слишком тупыми (оптимальные углы лежат в диапазоне 30–110º);
3. берите пеленги как можно точнее;
4. если скорость яхты большая (например, моторная яхта), то старайтесь взять пеленги за как можно меньший промежуток времени, чтобы уменьшить ошибку, вызванную перемещением яхты за это время.

Конечно, существуют еще много способов определения FIX , например, с помощью радара, с использованием створных объектов, измеренной секстаном высоты объектов, астрономические методы и т.д. Эти способы выходят за рамки нашего курса для «чайников».

Пожалуй, необходимо упомянуть о наиболее простом способе взятия FIX с помощью GPS – ваш GPS просто покажет вам координаты судна – нанесите их правильно на карту и поставьте время.

Навигация для "чайников". (Урок 4)

Спасительный крюйс-пеленг

Один очень опытный яхтсмен как-то рассказывал мне, что много лет назад на небольшой яхте он попал в пятидневный шторм в Средиземном море. Электрооборудование яхты вышло из строя на второй день шторма из-за удара молнии, батареи карманногоGPS исчерпали свой ресурс чуть позже, небо было затянуто тучами, так что возможности получить фикс, используя астронавигацию, не предоставлялось, да и как использовать секстан на маленькой яхте (32 фута) при высоте волны 5-6 метров?! Пять дней и ночей ветер силой 8-9 баллов свирепствовал и несколько раз менял свое направление, и о местоположении яхты можно было с уверенностью сказать только то, что она где-то в Средиземном море.

И вот на пятый вечер сквозь дождь и брызги волн шкипер заметил поблескивающий красный огонь. Заметив период огня, по справочнику огней шкипер определил маяк, а затем, несмотря на сильное волнение, используя метод крюйс-пеленга, определил свое местоположение с точностью до одной морской мили!

Итак, мы имеем только один видимый объект, который можем надежно идентифицировать на карте. В пределах нашей видимости, например, один маяк или знак навигационной обстановки, или маленький остров, мыс, скала, радиомачта.

В этом случае для определения местоположения яхты мы можем использовать метод, который называется running fix, или крюйс-пеленг. Метод основан на том, что мы берем два пеленга на один объект в разные моменты времени. Необходимым условием применения этого метода является сохранение скорости и курса яхты по крайней мере в течение промежутка времени между взятием первого и второго пеленга на этот объект.

Давайте посмотрим, как это выглядит на практике. Предположим, наша яхта идет истинным курсом 080°Т со скоростью 8 узлов. Мы ясно и четко видим скалу (rock ), обозначенную на нашей карте. С помощью компаса пеленгатора (hand bearing compass ) в 0900 берем пеленг на эту скалу и, учитывая магнитное склонение, пересчитываем его в истинный и наносим на карту. Обратите внимание, что курс (080°Т) мы прокладываем на карте в произвольном месте, так как мы пока не знаем, где находится яхта.

Допустим, первый пеленг, взятый нами в 0900 равен 45°М. Магнитное склонение положим равным 07°30"W . Пересчитываем магнитный пеленг в истинный: 045°М - 07°30"W = 37°30"T. Наносим его на карту. Продолжаем идти, скажем, 30 минут, стараясь как можно точнее держать курс 080°Т и сохраняя скорость 8 узлов. В 0930 берем второй пеленг на эту скалу. Положим, он равен 015°М. Пересчитываем его в истинный: 015° - 07°30"= 07°30"Т и наносим на карту –см. рис 1 .

Рис. 1

За 30 минут (время между взятием первого и второго пеленга) наша яхта прошла 4 морские мили курсом 80°Т. На линии курса от точки ее пересечения с первым пеленгом откладываем пройденное расстояние (4 морские мили). Переносим первый пеленг параллельно самому себе в эту точку. Точка пересечения пеленга, взятого в 0930, и перенесенного пеленга и есть местоположение нашей яхты в 0930, или RF 0930 (running fix ), --см. рис. 2 ирис. 3 .

Рис. 2

Рис. 3

Точность этого метода зависит от того, насколько точно вы можете держать курс, скорость и, естественно, насколько точно возьмете два пеленга. На относительно спокойной воде и при хорошо выверенном лаге этим методом можно получить фикс практически с точностьюGPS .

Искусство вождения судна кратчайшим путем от порта к порту называется навигацией. Другими словами, навигация - это способ прокладки курса судна от места отправления до места назначения, контроля курса, а при необходимости и его корректировка.

На ходовом мостике находятся приборы и устройства, необходимые для управления судном. Навигационные приборы - компасы, гироазимуты, автопрокладчики, лаги, лоты, эхолоты, секстаны и другие устройства, предназначены для определения местоположения судна и измерения отдельных элементов его движения судна.

Компасы

Компас – основной навигационный прибор, служащий для определения курса судна, для определения направлений (пеленгов) на различные объекты. На судах применяются магнитные и гироскопические компасы.

Магнитные компасы используются в качестве резервных и контрольных приборов. По назначению магнитные компасы делятся на главные и путевые.

Главный компас устанавливают на верхнем мостике в диаметральной плоскости судна, так чтобы обеспечить хороший обзор по всему горизонту (рис. 3.1). Изображение шкалы картушки при помощи оптической системы проектируется на зеркальный отражатель, установленный перед рулевым (рис. 3.2).

Рис. 3.1. Главный магнитный компас

Путевой магнитный компас устанавливают в рулевой рубке. Если главный компас имеет телескопическую передачу отсчета к посту рулевого, то путевой компас не устанавливают.

Рис. 3.2. Зеркальный отражатель магнитного компаса

На магнитную стрелку на судне действует судовое магнитное поле. Оно представляет собой совокупность двух магнитных полей: поля Земли и поля судового железа. Этим объясняется, что ось магнитной стрелки располагается не по магнитному меридиану, а в плоскости компасного меридиана. Угол между плоскостями магнитного и компасного меридианов называется девиацией.

В комплект компаса входят: котелок с картушкой, нактоуз, девиационный прибор, оптическая система и пеленгатор.

На спасательных шлюпках используется легкий, небольшой по размерам компас, не закрепленный стационарно (рис. 3.3).

Рис. 3.3. Шлюпочный магнитный компас

Гирокомпас - механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления (рис. 3.4 - 3.5). Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли.

Рис. 3.4. Современный гирокомпас

Гирокомпасы имеют два преимущества перед магнитными компасами:

  • они показывают направление на истинный полюс, т.е. на ту точку, через которую проходит ось вращения Земли, в то время как магнитный компас указывает направление на магнитный полюс;
  • они гораздо менее чувствительны к внешним магнитным полям, например, тем полям, которые создаются ферромагнитными деталями корпуса судна.

Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна.

Рис. 3.5. Репитер гирокомпаса с пеленгатором, установленный на пелорусе

Гирокомпас может выдавать ошибки измерения. Например, резкое изменение курса или скорости вызывают девиацию, и она будет существовать до тех пор, пока гироскоп не отработает такое изменение. На большинстве современных судов имеются системы спутниковой навигации (типа GPS) и/или другие навигационные средства, которые передают во встроенный компьютер гирокомпаса поправки. Современные конструкции лазерных гироскопов не выдают таких ошибок, поскольку вместо механических элементов в них используется принцип разности оптического пути.

Электронный компас построен на принципе определения координат через спутниковые системы навигации (рис. 3.6). Принцип действия компаса:

  1. на основании сигналов со спутников определяются координаты приёмника системы спутниковой навигации;
  2. засекается момент времени, в который было сделано определение координат;
  3. выжидается некоторый интервал времени;
  4. повторно определяется местоположение объекта;
  5. на основании координат двух точек и размера временного интервала вычисляется вектор скорости движения:
    • направление движения;
    • скорость движения.

Рис. 3.6. Электронные компасы

Эхолот

Навигационный эхолот предназначен для надежного измерения, наглядного представления, регистрации и передачи в другие системы данных о глубине под килем судна (рис. 3.7). Эхолот должен функционировать на всех скоростях судна от 0 до 30 узлов, в условиях сильной аэрации воды, ледяной и снежной шуги, колотого и битого льда, в районах с резко меняющимся рельефом дна, скалистым, песчаным или илистым грунтом.

Рис. 3.7. Указатель эхолота

На судах устанавливаются гидроакустические эхолоты. Принцип их работы заключается в следующем: механические колебания, возбуждаемые в вибраторе-излучателе, распространяются в виде короткого ультразвукового импульса, доходят до дна и, отразившись от него, принимаются вибратором-приемником.

Эхолоты автоматически указывают глубину моря, которую определяют по скорости распространения звука в воде и промежутку времени от момента посылки импульса до момента его приема (рис. 3.8).

Рис. 3.8. Принцип работы эхолота

Эхолот должен обеспечивать измерение глубин под килем в диапазоне от 1 до 200 метров. Указатель глубин должен быть установлен в рулевой рубке, а самописец – в рулевой или штурманской рубке.

Для измерения глубин применяется также ручной лот в случаях посадки судна на мель, промера глубин у борта во время стоянки у причала и т.п.

Ручной лот (рис. 3.9) состоит из свинцовой или чугунной гири и лотлиня. Гиря выполняется в форме конуса высотой 25 - 30 см и весом от 3 до 5 кг. В нижнем широком основании гири делается выемка, которая перед замером глубины смазывается солидолом. При касании лотом морского дна частицы грунта прилипают к солидолу, и после подъема лота по ним можно судить о характере грунта.

Рис. 3.9. Ручной лот

Разбивка лотлиня производится в метрических единицах и обозначается по следующей системе: на десятках метров вплетаются флагдуки различных цветов; каждое количество метров, оканчивающееся цифрой 5, обозначаются кожаной маркой с топориками.

В каждой пятерке первый метр обозначается кожаной маркой с одним зубцом, второй - маркой с двумя зубцами, третий - с тремя зубцами и четвертый - с четырьмя.

Лаг

Примерно с конца XV в. получил известность простой измеритель скорости - ручной лаг. Он состоял из деревянной дощечки со свинцовым грузом формой в 1/1 круга, к которой прикреплялся легкий трос, имеющий узлы через равные промежутки (чаще всего 7 м). Для измерения скорости парусных судов, плававших в те времена, лаг, как приблизительно постоянная отметка на поверхности воды, бросали за борт и поворачивали песочные часы, отмеряющие определенную продолжительность времени (14 с). За время, пока сыпался песок, матрос считал количество узлов, которые проходили через его руки. Число узлов, полученных за это время, давало в пересчете скорость судна в морских милях в час. Этот способ измерения скорости объясняет возникновение выражения «узел».

Лаг - навигационный прибор для измерения скорости судна и пройденного им расстояния. На морских судах применяются механические, геомагнитные, гидроакустические, индукционные и радиодоплеровские лаги. Различают:

  • относительные лаги, измеряющие скорость относительно воды; и
  • абсолютные лаги, измеряющие скорость относительно дна.

Гидродинамический лаг - относительный лаг, действие которого основано на измерении разности давления, которая зависит от скорости судна. Основу гидродинамического лага составляют две трубки, выведенные под днище судна: выходное отверстие одной трубки направлено к носовой части судна; а выходное отверстие другой трубки находится заподлицо с обшивкой. Динамическое давление определяется по разности высот воды в трубках и преобразуется механизмами лага в показания скорости судна в узлах. Кроме скорости, гидродинамические лаги показывают пройденное судном расстояние в милях.

Индукционный лаг - относительный лаг, принцип действия которого основан на зависимости между относительной скоростью проводника в магнитном поле и наводимой в этом проводнике электродвижущей силой (ЭДС). Магнитное поле создается электромагнитом лага, а проводником является морская вода. Когда судно движется, магнитное поле пересекает неподвижные участки водной среды, при этом в воде индуцируется ЭДС, пропорциональная скорости перемещения судна. С электродов ЭДС поступает в специальное устройство, которое вычисляет скорость судна и пройденное расстояние.

Гидроакустический лаг - абсолютный лаг, работающий на принципе эхолота. Различают доплеровские и корреляционные гидроакустические лаги.

Геомагнитный лаг - абсолютный лаг, основанный на использовании свойств магнитного поля Земли.

Радиолаг - лаг, принцип действия которого основан на использовании законов распространения радиоволн.

На практике отсчеты лага замечают в начале каждого часа и по разности отсчетов получают плавание S в милях и скорость судна V в узлах. Лаги имеют погрешность, которая учитывается поправкой лага.

Радионавигационные приборы

Судовая радиолокационная станция (РЛС) предназначена для обнаружения надводных объектов и берега, определения места судна, обеспечения плавания в узкостях, предупреждения столкновения судов (рис. 3.10).

Рис. 3.10. Экран РЛС

В РЛС используется явление отражения радиоволн от различных объектов, расположенных на пути их распространения, таким образом, в радиолокации используется явление эха. РЛС содержит передатчик, приемник, антенно-волноводное устройство, индикатор с экраном для визуального наблюдения эхо-сигналов.

Принцип работы РЛС следующий. Передатчик станции вырабатывает мощные высокочастотные импульсы электромагнитной энергии, которые с помощью антенны посылаются в пространство узким лучом. Отраженные от какого-либо объекта (судна, высокого берега и т. п.) радиоимпульсы возвращаются в виде эхо-сигналов к антенне и поступают в приемник. По направлению узкого радиолокационного луча, который в данный момент отразился от объекта, можно определить пеленг или курсовой угол объекта. Измерив, промежуток времени между посылкой импульса и приемом отраженного сигнала, можно получить расстояние до объекта. Так как при работе РЛС антенна вращается, излучаемые импульсные колебания охватывают весь горизонт. Поэтому на экране индикатора судовой РЛС создается изображение окружающей судно обстановки. Центральная светящаяся точка на экране индикатора РЛС отмечает место судна, а идущая от этой точки светящаяся линия показывает курс судна.

Изображение различных объектов на экране радара может быть ориентировано относительно диаметральной плоскости судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). Дальность «видимости» РЛС достигает несколько десятков миль и зависит от отражательной способности объектов и гидрометеорологических факторов.

Судовые РЛС позволяют за короткий промежуток времени определить курс и скорость встречного судна и избежать, таким образом, столкновения.

Рис. 3.11. Экран САРП

Все суда должны обеспечивать радиолокационную прокладку на экране РЛС, для этого их оборудуют системой автоматической радиолокационной прокладки (САРП). САРП выполняет обработку радиолокационной информации и позволяет производить (рис. 3.11):

  • ручной и автоматический захват целей и их сопровождение;
  • отображение на экране индикатора векторов относительного или истинного перемещения целей;
  • выделение опасно сближающихся целей;
  • индикацию на табло параметров движения и элементов сближения целей;
  • проигрывание маневра курсом и скоростью для безопасного расхождения;
  • автоматизированное решение навигационных задач;
  • отображение элементов содержания навигационных карт;
  • определение координат местоположения судна на основе радиолокационных измерений.

Автоматическая информационная система (АИС) является морской навигационной системой, использующей взаимный обмен между судами, а также между судном и береговой службой для передачи информации о позывном и наименовании судна для его опознавания, координатах, сведений о судне (размеры, груз, осадка и др.) и его рейсе, параметрах движения (курс, скорость и др.) с целью решения задач по предупреждению столкновений судов, контроля за соблюдением режима плавания и мониторинга судов в море.

Электронные картографические навигационные информационные системы (ЭКНИС) являются эффективным средством навигации, существенно сокращающим нагрузку на вахтенного помощника и позволяющим уделять максимум времени наблюдению за окружающей обстановкой и выработке обоснованных решений по управлению судном (рис. 3.12).

Рис. 3.12. ЭКНИС

Основные возможности и свойства ЭКНИС:

  • проведение предварительной прокладки;
  • проверка маршрута на безопасность;
  • ведение исполнительной прокладки;
  • автоматическое управление судном;
  • отображение "опасной изобаты " и "опасной глубины";
  • запись информации в электронный журнал с возможностью дальнейшего проигрывания;
  • ручная и автоматическая (через Internet) корректура;
  • подача сигнала тревоги при приближении к заданной изобате или глубине;
  • дневная, ночная, утренняя и сумеречная палитры;
  • электронная линейка и неподвижные метки;
  • базовая, стандартная и полная нагрузка дисплея;
  • обширная и дополняемая база морских объектов;
  • база приливов более чем в 3000 точек Мирового Океана.

Спутниковая система навигации - это система, состоящая из наземного и космического оборудования, предназначенная для определения местоположения (географических координат), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов (рис. 3.13).

Рис. 3.13. Индикатор GPS

GPS - это глобальная навигационная спутниковая система определения местоположения Global Position System. Система включает группировку низкоорбитальных навигационных спутников, наземные средства слежения и управления и самые разнообразные, служащие для определения координат. Принцип определения своего места на земной поверхности в глобальной системе позиционирования заключается в одновременном измерении расстояния до нескольких навигационных спутников (не менее трёх) - с известными параметрами их орбит на каждый момент времени, и вычислении по изменённым расстояниям своих координат.

Навигационные инструменты

Навигационный секстан - угломерный инструмент (рис. 3.14), служащий:

  • в мореходной астрономии - для измерения высот светил над видимым горизонтом;
  • в навигации - для измерения углов между земными предметами.

Рис. 3.14. Секстан

Слово «секстан» происходит от латинского слова «Sextans» - шестая часть круга.

Морской хронометр - высокоточные переносные часы, позволяющие получать в любой момент достаточно точное гринвичское время (рис. 3.15).

Рис. 3.15. Хронометр

Судовое время определяется по меридиану местонахождения судна и чаще всего корректируется ночью вахтенным офицером. Так, например, при изменении долготы на 15° на восток часы переводятся на 1 час вперед, а при изменении долготы на 15° в западном направлении - на 1 час назад.

Для того чтобы в машинном отделении, столовой команды, каютах, салонах, барах, камбузе иметь точное и одинаковое показание времени, устанавливают электрические часы, корректируемые от главных часов, находящихся на мостике.

Рис. 3.16. Прокладочный инструмент

К прокладочным инструментам относятся (рис. 3.16):

  • измерительный циркуль - для измерения и откладывания расстояний на карте;
  • параллельная линейка - для проведения на карте прямых, а также параллельных заданному направлению линий;
  • навигационный транспортир - для построения и измерения углов, курсов и пеленгов на карте.

Кроме этого, на мостике находятся журналы, папки с документацией, навигационные карты, обязательные справочники и пособия и др. (рис. 3.17).

Рис. 3.17. Документация

Представьте себе, что корабль находится в открытом море. Его со всех сторон окружают только небо и вода; вокруг не видно ни берега, ни островка. Плыви куда хочешь! , когда не было ни спутников Земли, ни радиосвязи? Если капитан судна не умеет производить астрономические наблюдения, он не сможет определить местоположение своего корабля. Останется один выход - отдаться «на волю волн». Но в этом случае корабль обречён почти на верную гибель.

Параллели и меридианы

Вся поверхность земного шара покрыта рядом воображаемых взаимно перпендикулярных линий, которые называются параллелями и меридианами , а их совокупность составляет так называемую градусную сетку. Линия, которая образуется сечением земного шара плоскостью, проходящей через центр Земли перпендикулярно к оси её вращения, называется экватором . Экватор одинаково удалён как от Южного, так и от Северного полюсов. Долготой называется расстояние в градусах от некоторого «нулевого» меридиана к западу (западная долгота) и к востоку (восточная долгота). Долгота отсчитывается от 0 до 180 градусов по земному экватору. Широтой называется расстояние в градусах от экватора до некоторой точки, лежащей либо между Северным полюсом и экватором (северная широта), либо между Южным полюсом и экватором (южная широта). Широта отсчитывается от 0 до 90 градусов. Введение понятия долготы и широты имеет громадное значение: оно позволило отмечать, фиксировать местопребывание той или иной далекой экспедиции в малоизведанных районах земной поверхности или определять местонахождение корабля в открытом море. Широта и долгота вместе с тем служат основой любой географической карты. Долгота и широта любого места определяются при помощи астрономических наблюдений. На этих наблюдениях было основано безопасное плавание в открытых морях и океанах.

Морская миля

Координаты местонахождения корабля в открытом море определялись только путём астрономических наблюдений. Отсюда взята и величина морской мили - основной единицы измерения расстояний, пройденных кораблем. Морская миля соответствует изменению положения какого-либо светила ровно на одну минуту дуги. Для наглядности представим себе, что Солнце находится в меридиане и его наблюдают с двух кораблей. Если при этом разность высот Солнца составит одну минуту дуги, то, следовательно, расстояние между этими кораблями будет равно одной морской миле.

Наука мореходства

Отсутствие точных знаний о движении небесных тел и неумение производить астрономические наблюдения долго служили громадным препятствием для развития мореходства. Итак, возникала настойчивая необходимость совершенствовать науку мореходства и мореходную астрономию. Английский парламент в 1714 году назначил премию в 20 тысяч фунтов стерлингов тому, кто предложит метод для определения долготы места в море, хотя бы с точностью до половины градуса. Много людей работало над этим вопросом десятилетия. Заманчиво было стать автором такого важного изобретения, не менее заманчиво было получить право на столь солидную премию. Прошло более полстолетия, а задача, поставленная парламентом, всё ещё не была решена.

Метод определения долготы

Наконец, в 1770 году часовщик Арнольд предложил парламенту метод определения долготы в открытом море . Этот метод был основан на перевозке хронометров. Первые пригодные для этого хронометры были построены Гаррисоном ещё в 1744 году. Этот метод заключался в следующем. Отправляясь в море из какого-нибудь порта, долгота которого известна, пользуются правильно идущим хронометром, который показывает время отправного пункта. Находясь в открытом море, путешественники по наблюдению небесных светил определяли местное время. Из сравнения местного времени с показанием хронометра находили разность времён. Эта разность времён и является разностью долгот отправного пункта и пункта нахождения. Этим методом в 1843 году с большой точностью (до сотой доли секунды) была определена долгота Пулковской астрономической обсерватории.

Положение точки на земной поверхности

Итак, положение какой-либо точки на земной поверхности определяется долготой и широтой. Величина дуги меридиана от земного экватора до данного места определяет его широту. Величина дуги экватора от нулевого (главного) меридиана до меридиана данного места определяет его долготу. Главным, или нулевым, меридианом принято считать тот, который проходит через знаменитую Гринвичскую астрономическую обсерваторию, находящуюся в Англии, неподалёку от Лондона. Чтобы определить долготу какой-либо точки на Земле, достаточно знать показания часов в этом месте и в Гринвиче в один и тот же момент . Это основано на том, что разность показаний часов в один и тот же момент каких-нибудь двух мест равна разности долгот этих мест. Вся окружность, как известно, составляет 360 градусов, что соответствует 24 часам; одному часу соответствует 15 градусов, а одной минуте времени соответствует 1/4 градуса, или 15 минут дуги. Так, например, разность показаний часов для одного и того же момента времени в Ленинграде и Гринвиче составляет 2 часа и 1 минуту. Следовательно, Ленинград находится к востоку от Гринвича на 30 градусов и 15 минут. Или, как принято говорить, Ленинград имеет 30 градусов и 15 минут восточной долготы. Широта - дуга меридиана от земного экватора до какого-либо определённого места. Или, иначе говоря, широта точки на земной поверхности равна угловой высоте полюса над горизонтом . Поэтому для определения широты местонахождения корабля в море проводили ряд астрономических наблюдений. Эти наблюдения обычно вели при помощи угломерного инструмента, называемого секстаном . Днём при помощи этого инструмента измеряют высоту , а ночью высоту Луны, Полярной или какой-нибудь другой звезды. В связи с изобретением радио определение долготы в море производится гораздо проще.

Международная комиссия времени

Была создана специальная Международная комиссия времени , которая весь земной шар условно разделила на девять зон. Выработана специальная схема, обязательная для всех стран мира, передачи точных, так называемых ритмических, сигналов времени, основанных на наблюдениях звезд. Ритмические сигналы времени передавались несколько раз в сутки по радио с девяти наиболее мощных радиостанций в различные часы гринвичского времени. Наиболее известны из этих радиостанций были ЭйРегби в Англии и станция имени Коминтерна в Москве. Поэтому, в каком бы пункте земного шара ни находился корабль, он при помощи радио, хотя бы с одной из девяти станций, получал сигнал точного времени и, следовательно, знал показание часов для главного меридиана в данный момент. Затем при помощи астрономических наблюдений определялось точное местное время и по разности этих двух времён - долгота местонахождения корабля.

О перемещении континентов

Известный геолог Вегенер когда-то высказал предположение, что континенты постоянно несколько перемещаются . Это перемещение, по его мнению, столь значительно, что оно при помощи астрономических наблюдений может быть обнаружено через небольшой сравнительно срок. Отсюда следовало, что долгота места тоже меняется, и это изменение можно заметить на протяжении сравнительно небольшого отрезка времени. Предположение, высказанное Вегенером, вызвало большой интерес у специалистов. Комиссия из представителей Международного астрономического и Международного геодезического союзов разработала проект определения мировых долгот по радио через каждые несколько лет. Впервые это определение долгот было проведено в 1926 году. Вершинами основного полигона были избраны три группы обсерваторий. Первая группа - в Алжире (Африка), Зи-Ка-Вей (Китай) и Сан-Диего (Калифорния); вторая группа - в Гринвиче, Токио, Ванкувере и Оттаве (Канада); третья группа - Манилла (Филиппины), Гонолулу (Сандвичевы острова), Сан-Диего и Вашингтон. Эти обсерватории имели связь с рядом обсерваторий, ведущих работу по службе времени. Вместе с тем долготные наблюдения велись многими обсерваториями и временными станциями. Работа была проведена успешно. Радиосигналы принимались на огромных расстояниях. Так, например, радиосигналы станций Бордо (Франция) принимались в Америке и Австралии. Долготы определялись с исключительно высокой точностью, и ошибка замыкания основного полигона не превышала 0,007 секунды. В 1933 году это предприятие было повторено в ещё более грандиозных масштабах, а технический уровень проведенных работ был ещё выше, чем в 1926 году. В результате оказалось, что предположение, высказанное Вегенером, не вполне подтвердилось. Если и имеет место вековое смещение Америки относительно Европы, то его величина, во всяком случае, не может превышать трёх сантиметров в год. Небезынтересно, однако, отметить, что из сравнения приёма сигналов времени, проводимых систематически обсерваториями Европы и Америки, обнаружено заметное (около 18 метров) колебание долгот с периодом примерно в 11 лет, почти совпадающим с периодом солнечных пятен.

Страница 2 из 2

Так были ли достоверными сведения, содержавшиеся в портуланах? Думаю, что это зависело от возлагаемых на них задач. Для решения «местных» прикладных задач - попадания из точки А в точку Б - они вполне подходили. Навигация по Средиземному морю была довольно неплохо изучена, поскольку постоянно поддерживалась крупными лоцманскими школами, такими как генуэзская, венецианская или лагушская. Для познания же всего мира портуланы совершенно не годились, больше путая исследователей, нежели помогая им.

Только с конца XIII века первые попытки океанского плавания, а также более широкое использование компаса выявили необходимость реального отображения на плоском листе бумаги рельефа берегов с указанием ветров и основных координат.

После XIV века портуланы часто сопровождаются приблизительными контурными рисунками средиземноморского побережья и атлантических берегов Западной Европы. Постепенно корабли, уходящие в океанские плавания, начинают включаться в работу по составлению более точных портуланов и рисунков.

Где-то к началу XV века появляются уже настоящие навигационные карты . Они представляют собой уже полный набор сведений для лоцмана: рельеф берегов, перечень расстояний, указания широты и долготы, ориентиры, названия портов и местных обитателей, указываются ветра, течения и морские глубины.

Карта, наследница математических знаний, полученных древними, все более точных сведений об астрономии и тысячелетнего опыта навигации из порта в порт, становится одним из главных плодов научной мысли первооткрывателей: отныне во время длительных плаваний требуется составлять отчеты, необходимые для полного отображения знаний о мире. И более того, появились первые судовые журналы ! Конечно, морские путешествия описывались и ранее, но теперь это начинает носить регулярный характер. Первым ввел обязательный судовой журнал для капитанов своих каравелл. Капитаны должны были ежедневно записывать сведения о берегах с указанием координат - дело чрезвычайно полезное для составления достоверных карт.

Несмотря на стремление уточнять и проверять, двигавшее наиболее знаменитыми картографами (Фра Мауро в 1457 году утверждал, что ему не удалось вместить в свою карту всех сведений, которые ему удалось собрать), фантазии, легенды, вымысел окружали любой картографический труд неким «фольклорным» ореолом: на большинстве карт, датированных до XVII века, мы видим, как на месте малоизвестных или недостаточно исследованных регионов возникают изображения различных чудовищ, почерпнутых из античной и раннехристианской мифологий.

Достаточно часто составитель, описывая обитателей отдаленных уголков, прибегал к домыслам. Районы, исследованные и попавшие под власть европейских королей, отмечались гербами и флагами. Однако великолепно разрисованные обширные розы ветров не могли принести пользы, если они неправильно ориентированы или размечены в ошибочных линиях «ромбов» (примитивная система ориентации, предшествовавшая системе меридианов и параллелей). Часто работа картографа становилась настоящим произведением искусства. При дворах королей разглядывали планисферы, словно полотна, за ними угадывались пустившиеся в дальние путешествия мореплаватели, чудовища вызывали дрожь, пройденные расстояния и интригующие названия завораживали. Потребовалось немало времени, прежде чем обычай делать карту декоративной уступил место действительно полезной картографии, лишенной всяческого вымысла.

Этим объясняется та недоверчивость, с которой великие мореплаватели, и в первую очередь Христофор Колумб , относились к разукрашенным картам XV века. Большинство моряков предпочитало доверяться своему знанию ветров, рельефа дна, течений и наблюдениям за небесной сферой, или отслеживанию движения косяков рыб или птичьих стай, для того чтобы ориентироваться в бескрайних просторах океана.

Несомненно, именно в XV веке благодаря португальским мореплавателям, а затем путешествию Колумба и, наконец, кругосветному путешествию Магеллана в 1522 году человечество смогло на практике проверить расчеты древних греков и представления о сферичности Земли. Многие мореплаватели теперь на практике получали конкретные знания, свидетельствующие о шаровидности нашей планеты. Кривая линия горизонта, перемещение относительной высоты расположения звезд, рост температуры по мере приближений к экватору, смена созвездий в южном полушарии - все это делало очевидной истину, которая противоречила христианской догме: Земля - это шар! Оставалось только измерить расстояния, которые необходимо было преодолеть в открытом море, чтобы добраться до Индии, в южном направлении, как это сделали португальцы в 1498 году, или в западном, как казалось Колумбу, когда он в 1492 году встретил на своем пути непреодолимое препятствие в лице обеих Америк.

Колумб был хорошо знаком с космографической литературой того времени. Его брат был картографом в Лиссабоне, и он сам попытался построить глобус на основе имевшихся атласов, современных и античных трактатов по космографии. Он, правда, допустил, вслед за и его «Имаго Мунди» (1410 год), грубую ошибку в оценке расстояния между Португалией и Азией, занизив его (есть гипотеза, что он сделал это преднамеренно). Тем не менее, он внял советам именитых картографов, таких как (который верил в морской путь на запад), (будущий папа Пий II) и (впоследствии автора довольно точного глобуса).

Начиная с 1435 года португальские и итальянские моряки взяли за правило плыть на расстоянии от африканского берега, чтобы избежать опасных зон и переменчивости ветров. Прибрежная зона, изобилующая рифами и отмелями, и впрямь являла собой очевидную опасность кораблекрушения.

Однако столь значительное удаление от берега, что он теряется из виду, предполагает умение ориентироваться в открытом море на плоском однообразном пространстве без маяков, ограниченном лишь линией горизонта. А морякам XV века не хватало теоретических познаний в области математики и геометрии, необходимых для точного определения своего местонахождения. Что же касается измерительных приборов, с ними дела обстояли еще хуже. До XVI-XVII веков ни один из них не был по-настоящему хорош в деле. На картах, хотя и постоянно уточняемых, имелись существенные пробелы.

Чтобы оценить чрезвычайное мужество мореплавателей, которые осваивали ближнюю, а затем и дальнюю Атлантику, надо вспомнить, какими жалкими средствами они располагали для определения своего местонахождения в открытом море. Перечень будет краток: моряки XV века, в том числе и Христофор Колумб, не обладали практически ничем, что помогло бы им решить три главных задачи любого мореплавателя, отправляющегося в дальнее плавание: держать курс, измерять пройденный путь, знать с точностью свое настоящее местоположение.

У моряка XV века в распоряжении имелись всего лишь примитивная буссоль (в различных вариациях), грубые песочные часы, кишащие ошибками карты, приблизительные таблицы склонения светил и, в большинстве случаев, ошибочные представления о размерах и форме Земли! В те времена любая экспедиция по океанским просторам становилась опасной авантюрой, часто со смертельным исходом.

В 1569 году Меркатор составил первую карту в равноугольной цилиндрической проекции , а голландец Лука Вагенер ввел в обиход атлас . Это был крупный шаг в науке навигации и картографии, ведь даже сегодня, в двадцать первом веке, современные морские карты составлены в атласы и выполнены в меркаторской проекции!

В 1530 году голландский астроном Гемма Фризий (1508-1555) в своем труде «Принципы астрономической космографии» предложил способ определения долготы с помощью хронометра, но отсутствие достаточно точных и компактных часов надолго оставили этот метод чисто теоретическим. Этот способ был назван хронометрическим . Почему же способ оставался теоретическим, ведь часы появились много ранее?

Дело в том, что часы в те времена редко могли идти без остановки в течение суток, а их точность не превышала 12-15 минут в сутки. Да и механизмы часов того времени не были приспособлены для работы в условиях морской качки, высокой влажности и резких перепадов температуры. Конечно, кроме механических, в морской практике долгое время использовались песочные и солнечные часы, но точность солнечных часов, время «завода» песочных часов были совершенно недостаточными для реализации хронометрического метода определения долготы.

Сегодня считается, что первые точные часы были собраны в 1735 англичанином Джоном Гаррисоном (1693-1776). Их точность составляла 4-6 секунд в сутки! По тем временам это была просто фантастическая точность! И более того, часы были приспособлены для морских путешествий!

Предки наивно считали, что Земля вращается равномерно, лунные таблицы грешили неточностями, квадранты и астролябии вносили свою погрешность, поэтому итоговые ошибки в вычислениях координат составляли до 2,5 градусов, а это около 150 морских миль, т. е. почти 250 км!

В 1731 году английский оптик усовершенствовал астролябию. Новый прибор, получивший название октант , позволял решить проблему измерения широты на движущемся судне, так как теперь два зеркала позволяли одновременно видеть и линию горизонта и солнце. Но октанту не досталась слава астролябии: за год до этого Хадли сконструировал секстант - прибор, позволявший с очень большой точностью измерять местоположение судна.

Принципиальное устройство секстанта, т. е. прибора, использующего принцип двойного отражения объекта в зеркалах, было разработано еще Ньютоном , но было забыто и только в 1730 году было заново изобретено Хэдли независимо от Ньютона.

Морской секстант состоит из двух зеркал: указательного и неподвижного полупрозрачного зеркала горизонта. Свет от светила (звезды либо планеты) падает на подвижное зеркало, отражается на зеркало горизонта, на котором одновременно видны и светило и горизонт. Угол наклона указательного зеркала и есть высота светила.

Поскольку этот сайт по истории, а не по кораблевождению, то я не буду вдаваться в подробности и особенности различных навигационных приборов, но хочу сказать несколько слов о еще двух приборах. Это лот () и лаг ().

В заключение, мне хотелось бы вкратце остановиться на некоторых исторических датах в истории развития навигации в России.

Тысяча семьсот первый год - это, пожалуй, самая знаменательная дата в отечественной навигации, поскольку в этом году император Петр I издал указ об учреждении «Математических и Навигацких, то есть мореходных хитростно наук учению».Год рождения первой отечественной навигационной школы.

Через два года, в 1703 году, преподаватель этой школы составил учебник «Арифметика». Третья часть книги носит заглавие «Обще о земном размерении, и яже мореплаванию принадлежит».

В 1715 году старшие классы школы преобразовали в Морскую Академию.

1725 год - это год рождения Петербургской Академии Наук, где преподавали такие светила науки, как, Михаил Ломоносов (1711-1765). Например, именно астрономические наблюдения и математическое описание движения планет Эйлера легли в основу высокоточных лунных таблиц для определения долготы. Гидродинамические исследования Бернулли позволили создать совершенные лаги для точного измерения скорости судна. Работы Ломоносова касались вопросов создания ряда новых навигационных приборов, послуживших прообразами приборов, которые используются и в настоящее время: курсопрокладчики, самописцы, лаги, кренометры, барометры, бинокли...

Публикации по теме