Основные подходы к разработке по. Общие принципы и подходы к разработке ПО

В первой части мы выбрали для сравнения методологий разработки ПО такие показатели, как отношение методологии к итеративной разработке и степень формальности в оформлении рабочих материалов и вообще в проведении разработки. В этой части мы используем названные показатели для сравнения наиболее известных методик разработки ПО.

Как получится…

Увы, это самая сложная для описания категория - ведь в нее входят как продукт судорожных метаний новичка, пытающегося любой ценой выполнить свой первый проект, так и вполне зрелые и устоявшиеся методологии, вобравшие в себя многолетний и разнообразный опыт конкретных команд разработчиков и даже описанные во внутренних регламентах. Поскольку люди, способные разработать собственную методологию, как правило, могут сами оценить ее в плане итеративности и формализованности, будем ориентироваться на новичков. Увы, чаще всего это означает, что правил ведения разработки либо не существует вообще, либо они разработаны и приняты, но не выполняются. Естественным в таких условиях является крайне низкий уровень формализма разработки. Так что с этим все понятно.

Разработка «Как получится»

А как обстоит дело с применением итеративного подхода? Увы, как правило, он в таких проектах не используется. Прежде всего потому, что он бы позволил еще на первых итерациях оценить проект как крайне сомнительный и требующий срочного вмешательства более высокого руководства для наведения порядка. Ведь в итеративном проекте традиционный ответ программиста, что у него уже все на 90% готово, проходит только до момента завершения первой итерации…

Структурные методологии

Структурные методологии

Структурные методы - это группа методологий, разработанных, как правило, еще до широкого распространения объектно-ориентированных языков. Все они предполагают каскадную разработку. Хотя, как выяснилось, еще в той статье, которую часто цитируют как первое изложение каскадного подхода, было сказано, что желательно начинать проект с разработки прототипа, то есть выполнять как минимум две итерации.

Тем не менее основу этих методологий составляют последовательный переход от работы к работе и передача результатов (документов) очередного этапа участникам последующего.

Также все эти методологии предполагают высокоформализованный подход, хотя высказывания о разумном количестве документации можно найти и в них. Одним из неочевидных примеров того, что методологии разработки ПО развивались не только на Западе, является цитата из изданной в нашей стране в начале 1980-х годов книги, гласящая, что степень формализации задания на программирование должна определяться исходя из того, насколько хорошо сработались аналитик и программист. И это при том, что тематика книги предполагала разработку достаточно критических, как их теперь называют, систем, ошибки в которых ведут к серьезным потерям или даже к катастрофам.

Гибкие методологии

Гибкие методологии базируются на десяти принципах, из которых мы назовем лишь те, которые определяют оценку этих методологий по выбранным параметрам:

  • главное - удовлетворить заказчика и предоставить ему продукт как можно скорее;
  • новые выпуски продукта должны появляться раз в несколько недель, в крайнем случае - месяцев;
  • наиболее эффективный способ передачи знаний участникам разработки и между ними - личное общение;
  • работающая программа - лучший показатель прогресса разработки.

Таким образом, эти методы явно ориентированы на итеративную разработку ПО и на минимальную формализацию процесса. Впрочем, относительно второго пункта необходимо сделать оговорку: названные методы ориентированы на минимально допустимый для данного проекта уровень формализации. По крайней мере, одна из методологий, входящих в группу гибких, - Crystal - имеет модификации, предназначенные для выполнения процессов с различным количеством участников и разной критичностью разрабатываемого ПО (критичность ПО определяется возможными последствиями ошибок, которые могут меняться в диапазоне от незначительных финансовых потерь на исправление ошибки до катастрофических). Чтобы дальнейшее сравнение с гибкими методологиями не было беспредметным, приведем краткие описания нескольких из них.

eXtreme Programming, или XP (экстремальное программирование)

Методология XP, разработанная Кентом Беком (Kent Beck), Уордом Каннингемом (Ward Cunningham) и Роном Джеффрисом (Ron Jeffries), является сегодня наиболее известной из гибких методологий. Иногда само понятие «гибкие методологии» явно или неявно отождествляют с XP, которая проповедует коммуникабельность, простоту, обратную связь и отвагу. Она описывается как набор практик: игра в планирование, короткие релизы, метафоры, простой дизайн, переработки кода (refactoring), разработка «тестами вперед», парное программирование, коллективное владение кодом, 40-часовая рабочая неделя, постоянное присутствие заказчика и стандарты кода. Интерес к XP рос снизу вверх - от разработчиков и тестировщиков, замученных тягостным процессом, документацией, метриками и прочим формализмом. Они не отрицали дисциплину, но не желали бессмысленно соблюдать формальные требования и искали новые быстрые и гибкие подходы к разработке высококачественных программ.

При использовании XP тщательное предварительное проектирование ПО заменяется, с одной стороны, постоянным присутствием в команде заказчика, готового ответить на любой вопрос и оценить любой прототип, а с другой - регулярными переработками кода (так называемый рефакторинг). Основой проектной документации считается тщательно прокомментированный код. Очень большое внимание в методологии уделяется тестированию. Как правило, для каждого нового метода сначала пишется тест, а потом уже разрабатывается собственно код метода до тех пор, пока тест не начнет выполняться успешно. Эти тесты сохраняются в наборах, которые автоматически выполняются после любого изменения кода.

Хотя парное программирование и 40-часовая рабочая неделя и являются, возможно, наиболее известными чертами XP, но все же носят вспомогательный характер и способствуют высокой производительности разработчиков и сокращению количества ошибок при разработке.

Crystal Clear

Crystal - семейство методологий, определяющих необходимую степень формализации процесса разработки в зависимости от количества участников и критичности задач.

Методология Crystal Clear уступает XP по производительности, зато максимально проста в использовании. Она требует минимальных усилий для внедрения, поскольку ориентирована на человеческие привычки. Считается, что эта методология описывает тот естественный порядок разработки ПО, который устанавливается в достаточно квалифицированных коллективах, если в них не занимаются целенаправленным внедрением другой методологии.

Основные характеристики Crystal Clear:

  • итеративная инкрементная разработка;
  • автоматическое регрессионное тестирование;
  • пользователи привлекаются к активному участию в проекте;
  • состав документации определяется участниками проекта;
  • как правило, используются средства контроля версий кода.

Помимо Crystal Clear, в семейство Crystal входит еще несколько методологий, предназначенных для выполнения более крупных или более критических проектов. Они отличаются несколько более жесткими требованиями к объему документации и вспомогательным процедурам, таким как управление изменениями и версиями.

Feature Driven Development

Функционально-ориентированная разработка (Feature Driven Development, FDD) оперирует понятием функции или свойства (feature) системы, достаточно близким к понятию сценария использования, применяемому в RUP. Едва ли не самое существенное отличие - это дополнительное ограничение: «каждая функция должна допускать реализацию не более чем за две недели». То есть если сценарий использования достаточно мал, его можно считать функцией, а если велик, то его надо разбить на несколько относительно независимых функций.

FDD включает пять процессов, причем последние два повторяются для каждой функции:

  • разработка общей модели;
  • составление списка необходимых функций системы;
  • планирование работы над каждой функцией;
  • проектирование функции;
  • конструирование функции.

Работа над проектом предполагает частые сборки и делится на итерации, каждая из которых реализуется с помощью определенного набора функций.

Разработчики в FDD делятся на «хозяев классов» и «главных программистов». Главные программисты привлекают хозяев задействованных классов к работе над очередным свойством. Для сравнения: в XP нет персонально ответственных за классы или методы.

Общие черты

Список гибких методологий в настоящее время достаточно широк. Тем не менее описанные нами методологии дают весьма полное представление обо всем семействе.

Практически все гибкие методологии используют итеративный подход, при котором детально планируется только ограниченный объем работ, связанный с выпуском очередного релиза.

Практически все гибкие методологии ориентированы на максимально неформальный подход к разработке. Если проблему можно решить в ходе обычной беседы, то лучше именно так и поступить. Причем оформлять принятое решение в виде бумажного или электронного документа нужно только тогда, когда без этого невозможно обойтись.

Гибкие методологии

ГОСТы

ГОСТы, как и описываемые в следующем разделе требования модели CMM, не являются методологиями. Они, как правило, не описывают сами процессы разработки ПО, а только формулируют определенные требования к процессам, которым в той или иной степени соответствуют различные методологии. Сравнение требований по тем же критериям, по которым мы сравниваем методологии, поможет сразу определиться с тем, какими методологиями стоит пользоваться, если вам нужно выполнить разработку в соответствии с ГОСТ.

В настоящее время в России действуют старые ГОСТы 19-й и 34-й серий и более новый ГОСТ Р ИСО МЭК 122207. ГОСТы 19-й и 34-й серий жестко ориентированы на каскадный подход к разработке ПО. Разработка в соответствии с этими ГОСТами проводится по этапам, каждый из которых предполагает выполнение строго определенных работ, и завершается выпуском достаточно большого числа весьма формализованных и обширных документов. Таким образом, сразу строгое следование этим стандартам не только приводит к каскадному подходу, но и обеспечивает очень высокую степень формализованности разработки.

Требования ГОСТов

ГОСТ 12207, в отличие от стандартов 19-й и 34-й серий, описывает разработку ПО как набор основных и вспомогательных процессов, которые могут действовать от начала и до завершения проекта. Модель жизненного цикла может выбираться исходя из особенностей проекта. Таким образом, этот ГОСТ явно не запрещает применение итеративного подхода, но и явно не рекомендует его использование. ГОСТ 12207 также более гибок в части требований к формальности процесса разработки. В нем содержатся только указания на необходимость документирования основных результатов всех процессов, но нет перечней требуемых документов и указаний относительно их содержания.

Таким образом, ГОСТ 12207 допускает итеративную и менее формализованную разработку ПО.

Модели зрелости процесса разработки (CMM, CMMI)

Помимо государственных и международных стандартов, существует несколько подходов к сертификации процесса разработки. Наиболее известными из них в России являются, по-видимому, CMM и CMMI.

CMM (Capability Maturity Model) - модель зрелости процессов создания ПО, которая предназначена для оценки уровня зрелости процесса разработки в конкретной компании. В соответствии с этой моделью имеется пять уровней зрелости процесса разработки. Первый уровень соответствует разработке «как получится», когда на каждый проект разработчики идут как на подвиг. Второй соответствует более-менее налаженным процессам, когда можно с достаточной уверенностью рассчитывать на положительный исход проекта. Третий соответствует наличию разработанных и хорошо описанных процессов, используемых при разработке, а четвертый - активному использованию метрик в процессе управления для постановки целей и контроля их достижения. И наконец, пятый уровень означает способность компании оптимизировать процесс по мере необходимости.

Требования CMM и CMMI

После появления CMM стали разрабатываться специализированные модели зрелости для создания информационных систем, для процесса выбора поставщиков и некоторые другие. На их основе была разработана интегрированная модель CMMI (Capability Maturity Model Integration). Кроме того, в CMMI была предпринята попытка преодолеть проявившиеся к тому времени недостатки CMM - преувеличение роли формальных описаний процессов, когда наличие определенной документации оценивалось значительно выше, чем просто хорошо налаженный, но не описанный процесс. Тем не менее CMMI также ориентирован на использование весьма формализованного процесса.

Таким образом, основой моделей CMM и CMMI является формализация процесса разработки. Они нацеливают разработчиков на внедрение детально описанного в регламентах и инструкциях процесса, который, в свою очередь, не может не требовать разработки большого объема проектной документации для соответствующего контроля и отчетности.

Связь CMM и CMMI с итеративной разработкой более опосредованная. Формально ни та ни другая не выдвигают конкретных требований к тому, чтобы придерживаться каскадного или итеративного подхода. Однако, по мнению ряда специалистов, CMM в большей степени совместима с каскадным подходом, в то время как CMMI допускает также и применение итеративного подхода.

RUP

Безусловно, RUP - это итеративная методология. Хотя формально обязательность выполнения всех фаз или какого-то минимального числа итераций нигде в RUP не обозначена, весь подход ориентирован на то, что их достаточно много. Ограниченное количество итераций не позволяет в полной мере использовать все преимущества RUP. Вместе с тем RUP можно применять и в практически каскадных проектах, включающих реально всего пару итераций: одну в фазе «Построение», а другую в фазе «Передача». Кстати говоря, в каскадных проектах реально используется именно такое количество итераций. Ведь проведение испытаний и опытной эксплуатации системы предполагает внесение исправлений, которые могут подразумевать определенные действия, связанные с анализом, проектированием и разработкой, то есть фактически являются еще одним проходом через все фазы разработки.

Методология RUP

Что касается формальности методологии, то здесь RUP представляет пользователю весьма широкий диапазон возможностей. Если выполнять все работы и задачи, создавать все артефакты и достаточно формально (с официальным рецензентом, с подготовкой полной рецензии в виде электронного или бумажного документа и т.д.) проводить все рецензирования, RUP может оказаться крайне формальной, тяжеловесной методологией. В то же время RUP позволяет разрабатывать только те артефакты и выполнять только те работы и задачи, которые необходимы в конкретном проекте. А выбранные артефакты могут выполняться и рецензироваться с произвольной степенью формальности. Можно требовать детальной проработки и тщательного оформления каждого документа, предоставления столь же тщательно выполненной и оформленной рецензии и даже, следуя старой практике, утверждать каждую такую рецензию на научно-техническом совете предприятия. А можно ограничиться электронным письмом или наброском на бумаге. Кроме того, всегда остается еще одна возможность: сформировать документ в голове, то есть обдумать соответствующий вопрос и принять конструктивное решение. И если это решение касается только вас, то ограничиться, например, комментарием в коде программы.

Таким образом, RUP - итеративная методология с очень широким диапазоном возможных решений в части формализации процесса разработки.

Подведем итоги второй части статьи. RUP, в отличие от большинства других методологий, позволяет в широком диапазоне выбирать степень формализации и итеративности процесса разработки в зависимости от особенностей проектов и разрабатывающей организации.

А почему это так важно - мы обсудим в следующей части.

Итак, сущность структурного подхода к разработке ПО ЭИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые, в свою очередь, делятся на подфункции, те - на задачи и так далее до конкретных процедур. При этом система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы «снизу-вверх», от отдельных задач ко всей системе, целостность теряется, возникают проблемы при описании информационного взаимодействия отдельных компонентов.

Все наиболее распространенные методы структурного подхода базируются на ряде общих принципов:

1. Принцип «разделяй и властвуй»;

2. Принцип иерархического упорядочения- принцип организации составных частей системы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.

Выделение двух базовых принципов не означает, что остальные принципы являются второстепенными, т.к. игнорирование любого из них может привести к непредсказуемым последствиям (в том числе и к провалу всего проекта»). Основными из этих принципов являются:

1. Принцип абстрагирования- выделение существенных аспектов системы и отвлечение от несущественных.

2. Принцип непротиворечивости,обоснованность и согласованность элементов системы.

3. Принцип структурирования данных- данные должны быть структурированы и иерархически организованы.

В структурном подходе в основном две группы средств, описывающих функциональную структуру системы и отношения между данными. Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными среди них являются:

· DFD (Data Flow Diagrams) - диаграммы потоков данных;

· SADT (Structured Analysis and Design Technique - методология структурного анализа и проектирования) - модели и соответствующие функциональные диаграммы: нотации IDEF0 (функциональное моделирование систем), IDEF1х (концептуальное моделирование баз данных), IDEF3х (построение систем оценки качества работы объекта; графическое описание потока процессов, взаимодействия процессов и объектов, которые изменяются этими процессами);

· ERD (Entity - Relationship Diagrams) - диаграммы «сущность-связь».

Практически во всех методах структурного подхода (структурного анализа) на стадии формирования требований к ПО используются две группы средств моделирования:

1. Диаграммы, иллюстрирующие функции, которые система должна выполнять, и связи между этими функциями - DFD или SADT (IDEF0).

2. Диаграммы, моделирующие данные и их отношения (ERD).

Конкретный вид перечисленных диаграмм и интерпретация их конструкций зависят от стадии ЖЦ ПО.

На стадии формирования требований к ПО SADT-модели и DFD используются для построения модели “AS-IS” и модели “TO-BE”, отражая таким образом существующую и предлагаемую структуру бизнес-процессов организации и взаимодействие между ними (использование SADT-моделей, как правило, ограничивается только данной стадией, поскольку они изначально не предназначались для проектирования ПО). С помощью ERD выполняется описание используемых в организации данных на концептуальном уровне, не зависимо от средств реализации базы данных (СУБД).

1. Каскадная (англ. waterfall) - стандартная модель разработки

Каскадная модель разработки - модель, при которой все этапы разработки ведутся последовательно - последующий этап начинается после полного завершения предыдущего.

Такая модель включает следующие этапы процесса разработки ПО:

В первую очередь определяются технические параметры будущей программы, в результате утверждается список требований к программному обеспечению. Далее происходит переход к проектированию, в процессе которого создается документация, описывающая для программистов план и способ реализации требований.

После полного завершения проектирования программистами выполняется реализация (конструирование) проекта. На стадии воплощения происходит интеграция всех компонентов проекта. Только после полного завершения этих стадий производится тестирование и отладка готового продукта. Далее программный продукт можно внедрять и после внедрения осуществлять поддержку - вносить новый функционал и устранять ошибки.

Основные плюсы каскадной разработки:

2. Гибкая методология разработки программного обеспечения (Agile software development)

Ряд методологий разработки программного обеспечения, предусматривающий совместную работу представителей заказчика и разработчиков. В основе гибкого метода разработки лежит итеративный подход, динамическое формирование требований и их реализация короткими этапами.

Результатом каждого такого этапа, включающего цикл итерраций, является некий миниатюрный программный проект,

Методов гибкой разработки несколько, из наиболее известных - Scrum, экстремальное программирование, DSDM.

Основные плюсы гибкой разработки:

минимизация рисков; постепенное наращивание функционала программного продукта; небольшой объем письменной документации; запуск базовой версии программы в кратчайшие сроки.

Существуют и минусы:

невозможность точного определения бюджета проекта; невозможность определения точных сроков готовности проекта; не подходит для государственных и бюджетных организаций; требует мотивации от ответственных представителей заказчика.

Agile-манифест разработки программного обеспечения

Мы постоянно открываем для себя более совершенные методы разработки программного обеспечения, занимаясь разработкой непосредственно и помогая в этом другим. Благодаря проделанной работе мы смогли осознать, что:

Люди и взаимодействие важнее процессов и инструментов

Работающий продукт важнее исчерпывающей документации

Сотрудничество с заказчиком важнее согласования условий контракта

Готовность к изменениям важнее следования первоначальному плану

То есть, не отрицая важности того, что справа, мы всё-таки больше ценим то, что слева.

Принципы гибкой разработки:

Удовлетворение клиента за счёт быстрой и бесперебойной поставки необходимого программного обеспечения;
приветствие изменений требований даже в конце разработки (это может повысить конкурентоспособность полученного продукта);
частая поставка рабочего программного обеспечения (каждый месяц или неделю или ещё чаще);
тесное, ежедневное общение заказчика с разработчиками на протяжении всего проекта;
проектом занимаются мотивированные личности, которые обеспечены нужными условиями работы, поддержкой и доверием;
рекомендуемый метод передачи информации — личный разговор (лицом к лицу);
работающее программное обеспечение — лучший измеритель прогресса;
спонсоры, разработчики и пользователи должны иметь возможность поддерживать постоянный темп на неопределённый срок;
постоянное внимание улучшению технического мастерства и удобному дизайну;
простота — искусство не делать лишней работы;
лучшие технические требования, дизайн и архитектура получаются у самоорганизованной команды;
​постоянная адаптация к изменяющимся обстоятельствам.

1.Кодирование

На этапе разработки ПП выполняются следующие основные действия: кодирование; тестирование; разработка справочной си­стемы ПП; создание документации пользователя; создание вер­сии и инсталляции ПП,

Кодирование представляет собой процесс преобразования ре­зультатов высокоуровнего и низкоуровнего проектирования в го­товый программный продукт. Другими словами, при кодирова­нии происходит описание составленной модели ПП средствами выбранного языка программирования, которым может быть любой из существующих языков. Выбор языка осуществляется либо по желанию заказчика, либо с учетом решаемой задачи и личного опыта разработчиков.

При кодировании необходимо следовать стандарту на выбран­ный язык, например, для языка С - это ANSI С, а для C++ - ISO/IEC 14882 «Standartforthe C++ ProgrammingLanguage».

Кроме общепринятого стандарта на язык программирования в компании могут использоваться разработаны и свои дополнитель­ные требования к правилам написания программ. В основном они касаются правил оформления текста программы.

Следование стандарту и правилам компании позволяет создать корректно работающую, легко читаемую, понятную другим раз­работчикам программу, содержащую сведения о разработчике, дату создания, имя и назначение, а также и необходимые данные для управления конфигурацией.

На этапе кодирования программист пишет программы и сам их тестирует. Такое тестирование называется модульным. Все воп­росы, связанные с тестированием ПП, рассмотрены в гл. 10, здесь же описана технология тестирования, которая применяется на этапе разработки ПП. Эта технология называется тестированием «стеклянного ящика» (glassbox); иногда ее еще называют тестиро­ванием «белого ящика» (whitebox) в противоположность класси­ческому понятию «черного ящика» (blackbox).

При тестировании «черного ящика» программа рассматривается как объект, внутренняя структура которого неизвестна. Тестировщик вводит данные и анализирует результат, но он не знает, как именно работает программа. Подбирая тесты, специалист ищет интересные с его точки зрения входные данные и условия, которые могут привести к нестандартным результатам. Интересны для него прежде всего те представители каждого класса входных данных, при которых с наибольшей вероятностью могут проявиться ошибки тестируемой программы.

При тестировании «стеклянного ящика» ситуация совершенно иная. Тестировщик (в данном случае сам программист) разрабатывает тесты, основываясь на знании исходного кода, к которому он имеет полный доступ. В результате он получает следующие преимущества.

1. Направленность тестирования. Программист может тестировать программу по частям, разрабатывать специальные тестовые подпрограммы, которые вызывают тестируемый модуль и передают ему интересующие программиста данные. Отдельный модуль гораздо легче протестировать именно как «стеклянный ящик».

2.Полный охват кода. Программист всегда может определить, какие именно фрагменты кода работают в каждом тесте. Он видит, какие еще ветви кода остались непротестированными, и может подобрать условия, в которых они будут протестированы. Ниже описано, как отслеживать степень охвата программного кода про­веденными тестами.

3.Возможность управления потоком команд. Программист всегда знает, какая функция должна выполняться в программе следующей и каким должно быть ее текущее состояние. Чтобы выяснить, работает ли программа так, как он думает, программист может включить в нее отладочные команды, отображающие информацию о ходе ее выполнения, или воспользоваться для этого специальным программным средством, называемым отладчиком. Отладчик может делать очень много полезных вещей: отслежи­вать и менять последовательность выполнения команд программы, показывать содержимое ее переменных и их адреса в памяти др.

4.Возможность отслеживания целостности данных. Программисту известно, какая часть программы должна изменять каждый элемент данных. Отслеживая состояние данных (с помощью того же отладчика), он может выявить такие ошибки, как изменение данных не теми модулями, их неверная интерпретация или неудачная организация- Программист может и самостоятельно автоматизировать тестирование.

5.Видение внутренних граничных точек. В исходном коде видны те граничные точки программы, которые скрыты от взгляда извне. Например, для выполнения определенного действия может быть использовано несколько совершенно различных алгоритмов, и, не заглянув в код, невозможно определить, какой из них выбрал программист. Еще одним типичным примером может быть проблема переполнения буфера, используемого для временного хранения входных данных. Программист сразу может сказать, при каком количестве данных буфер переполнится, и ему не нужно при этом проводить тысячи тестов.

6.Возможность тестирования, определяемого выбранным алгоритмом. Для тестирования обработки данных, использующей очень сложные вычислительные алгоритмы, могут понадобиться спе­циальные технологии. В качестве классических примеров можно привести преобразование матрицы и сортировку данных. Тестировщику, в отличие от программиста, нужно точно знать, какие алгоритмы используются, поэтому приходится обращаться к специальной литературе.

Тестирование «стеклянного ящика» - часть процесса програм­мирования. Программисты выполняют эту работу постоянно, они тестируют каждый модуль после его написания, а затем еще раз после интеграции его в систему.

При выполнении модульного тестирования можно использовать технологию либо структурного, либо функционального тес­тирования или и ту, и другую.

Структурное тестирование является одним из видов тестирования «стеклянного ящика». Его главной идеей является правиль­ный выбор тестируемого программного пути. В противоположность ему функциональное тестирование относится к категории тестиро­вания «черного ящика». Каждая функция программы тестируется путем ввода ее входных данных и анализа выходных. При этом внутренняя структура программы учитывается очень редко.

Хотя структурное тестирование имеет гораздо более мощную теоретическую основу, большинство тестировщиков предпочитают функциональное тестирование. Структурное тестирование лучше поддается математическому моделированию, но это со­всем не означает, что оно эффективнее. Каждая из технологий позволяет выявить ошибки, пропускаемые в случае использования другой. С этой точки зрения их можно назвать одинаково эффективными.

Объектом тестирования может быть не только полный путь программы (последовательность команд, которые она выполняет от старта до завершения), но и его отдельные участки. Протестировать все возможные пути выполнения программы абсолютно нереально. Поэтому специалисты по тестированию выделяют из всех возможных путей те группы, которые нужно протестировать обязательно. Для отбора они пользуются специальными критериями, называемыми критериями охвата {coveragecriteria), которые определяют вполне реальное (пусть даже и достаточно большое) число тестов. Данные критерии иногда называют логическими критериями охвата, или критериями полноты.

3. Разработка справочной системы программного продукта. Создание документации пользователя

Целесообразно одного из сотрудников проекта назначать техническим редактором документации. Этот сотрудник может вы­полнять и другую работу, но главной его задачей должен быть анализ документации, даже если ее разрабатывают и другие сотрудники.

Часто бывает так, что над созданием ПП работают несколько человек, но никто из них не несет полной ответственности за его качество. В результате ПП не только не выигрывает от того, что его разрабатывает большее число людей, но еще и проигрывает, поскольку каждый подсознательно перекладывает ответственность на другого и ожидает, что ту или иную часть работы выполнят его коллеги. Эту проблему и решает назначение редактора, несущего полную ответственность за качество и точность технической доку­ментации.

Справочная система ПП формируется на основе материала, разработанного для руководства пользователя. Формирует и создает ее ответственный за выполнение этой работы. Им может быть как технический редактор, так и один из разработчиков совмест­но с техническим редактором.

У хорошо документированного ПП имеются следующие преимущества.

1. Легкость использования. Если ПП хорошо документирован, то его гораздо легче применять. Пользователи его быстрее изучают, делают меньше ошибок, а в результате быстрее и эффективнее выполняют свою работу.

2. Меньшая стоимость технической поддержки. Когда пользователь не может разобраться, как выполнить необходимые ему действия, он звонит производителю ПП в службу техническойподдержки. Содержание такой службы обходится очень дорого. Хорошее же руководство помогает пользователям решать возникающие проблемы самостоятельно и меньше обращаться в группутехнической поддержки.

3. Высокая надежность. Непонятная или неаккуратная документация делает ПП менее надежным, поскольку его пользователи чаще допускают ошибки, им трудно разобраться, в чем их причи­на и как справиться с их последствиями.

Легкость сопровождения. Огромное количество денег и времени тратится на анализ проблем, которые порождены ошибка ми пользователей. Изменения, вносимые в новые выпуски ПП,зачастую являются просто сменой интерфейса старых функций. Они вносятся для того, чтобы пользователи, наконец, разобра­лись, как применять ПП, и перестали звонить в службу техниче­ской поддержки. Хорошее руководство в значительной степени

Публикации по теме